Metamath Proof Explorer


Theorem iotassuni

Description: The iota class is a subset of the union of all elements satisfying ph . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion iotassuni ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 iotauni ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
2 eqimss ( ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
3 1 2 syl ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
4 iotanul ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ )
5 0ss ∅ ⊆ { 𝑥𝜑 }
6 4 5 eqsstrdi ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 } )
7 3 6 pm2.61i ( ℩ 𝑥 𝜑 ) ⊆ { 𝑥𝜑 }