Description: Obsolete version of iotassuni as of 23-Dec-2024. (Contributed by Mario Carneiro, 24-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotassuniOLD | ⊢ ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) | |
| 2 | eqimss | ⊢ ( ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) | |
| 3 | 1 2 | syl | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) |
| 4 | iotanul | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∅ ) | |
| 5 | 0ss | ⊢ ∅ ⊆ ∪ { 𝑥 ∣ 𝜑 } | |
| 6 | 4 5 | eqsstrdi | ⊢ ( ¬ ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } ) |
| 7 | 3 6 | pm2.61i | ⊢ ( ℩ 𝑥 𝜑 ) ⊆ ∪ { 𝑥 ∣ 𝜑 } |