Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 12-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotauni | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) | |
2 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 ) | |
3 | uniabio | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ∪ { 𝑥 ∣ 𝜑 } = 𝑧 ) | |
4 | 2 3 | eqtr4d | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) |
5 | 4 | exlimiv | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) |
6 | 1 5 | sylbi | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = ∪ { 𝑥 ∣ 𝜑 } ) |