Metamath Proof Explorer


Theorem iotauni

Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion iotauni ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) )
2 iotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = 𝑧 )
3 uniabio ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) → { 𝑥𝜑 } = 𝑧 )
4 2 3 eqtr4d ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
5 4 exlimiv ( ∃ 𝑧𝑥 ( 𝜑𝑥 = 𝑧 ) → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )
6 1 5 sylbi ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) = { 𝑥𝜑 } )