Metamath Proof Explorer


Theorem iotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )

Proof

Step Hyp Ref Expression
1 dfiota2 ( ℩ 𝑥 𝜑 ) = { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) }
2 sbeqalb ( 𝑦 ∈ V → ( ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 ) )
3 2 elv ( ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 )
4 3 ex ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) → 𝑦 = 𝑧 ) )
5 equequ2 ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦𝑥 = 𝑧 ) )
6 5 bibi2d ( 𝑦 = 𝑧 → ( ( 𝜑𝑥 = 𝑦 ) ↔ ( 𝜑𝑥 = 𝑧 ) ) )
7 6 biimpd ( 𝑦 = 𝑧 → ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜑𝑥 = 𝑧 ) ) )
8 7 alimdv ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
9 8 com12 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( 𝑦 = 𝑧 → ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ) )
10 4 9 impbid ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ 𝑦 = 𝑧 ) )
11 equcom ( 𝑦 = 𝑧𝑧 = 𝑦 )
12 10 11 bitrdi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) )
13 12 alrimiv ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) )
14 uniabio ( ∀ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) } = 𝑦 )
15 13 14 syl ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑧 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) } = 𝑦 )
16 1 15 eqtrid ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )