Step |
Hyp |
Ref |
Expression |
1 |
|
dfiota2 |
⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } |
2 |
|
sbeqalb |
⊢ ( 𝑦 ∈ V → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 ) ) |
3 |
2
|
elv |
⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
4 |
3
|
ex |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) → 𝑦 = 𝑧 ) ) |
5 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
6 |
5
|
bibi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
7 |
6
|
biimpd |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
8 |
7
|
alimdv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
9 |
8
|
com12 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑦 = 𝑧 → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ) ) |
10 |
4 9
|
impbid |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
11 |
|
equcom |
⊢ ( 𝑦 = 𝑧 ↔ 𝑧 = 𝑦 ) |
12 |
10 11
|
bitrdi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) ) |
13 |
12
|
alrimiv |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) ) |
14 |
|
uniabio |
⊢ ( ∀ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ 𝑧 = 𝑦 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = 𝑦 ) |
15 |
13 14
|
syl |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∪ { 𝑧 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) } = 𝑦 ) |
16 |
1 15
|
eqtrid |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |