Step |
Hyp |
Ref |
Expression |
1 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |
2 |
|
iotasbc |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ) ) |
3 |
|
iotaexeu |
⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
4 |
|
eqsbc1 |
⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
5 |
3 4
|
syl |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
6 |
2 5
|
bitr3d |
⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
7 |
|
equequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑥 = 𝑦 ) ) |
8 |
7
|
bibi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
9 |
8
|
albidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
10 |
9
|
biimpac |
⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
12 |
6 11
|
syl6bir |
⊢ ( ∃! 𝑥 𝜑 → ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
13 |
1 12
|
impbid2 |
⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |