Metamath Proof Explorer


Theorem iotavalb

Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalb ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 iotaval ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 )
2 iotasbc ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ) )
3 iotaexeu ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V )
4 eqsbc1 ( ( ℩ 𝑥 𝜑 ) ∈ V → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )
5 3 4 syl ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝑧 = 𝑦 ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )
6 2 5 bitr3d ( ∃! 𝑥 𝜑 → ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )
7 equequ2 ( 𝑧 = 𝑦 → ( 𝑥 = 𝑧𝑥 = 𝑦 ) )
8 7 bibi2d ( 𝑧 = 𝑦 → ( ( 𝜑𝑥 = 𝑧 ) ↔ ( 𝜑𝑥 = 𝑦 ) ) )
9 8 albidv ( 𝑧 = 𝑦 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
10 9 biimpac ( ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
11 10 exlimiv ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) ∧ 𝑧 = 𝑦 ) → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
12 6 11 syl6bir ( ∃! 𝑥 𝜑 → ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
13 1 12 impbid2 ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )