Step |
Hyp |
Ref |
Expression |
1 |
|
19.8a |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
2 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
3 |
|
iotavalb |
⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) ) |
4 |
|
dfsbcq |
⊢ ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |
5 |
4
|
eqcoms |
⊢ ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |
6 |
3 5
|
syl6bi |
⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) ) |
7 |
2 6
|
sylbir |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) ) |
8 |
1 7
|
mpcom |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓 ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) |