Metamath Proof Explorer


Theorem iotavalsb

Description: Theorem *14.242 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalsb ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.8a ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
2 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 iotavalb ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ℩ 𝑥 𝜑 ) = 𝑦 ) )
4 dfsbcq ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) )
5 4 eqcoms ( ( ℩ 𝑥 𝜑 ) = 𝑦 → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) )
6 3 5 syl6bi ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) )
7 2 6 sylbir ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) ) )
8 1 7 mpcom ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑧 ] 𝜓[ ( ℩ 𝑥 𝜑 ) / 𝑧 ] 𝜓 ) )