| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ip0l.z | ⊢ 𝑍  =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ip0l.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 8 | 3 5 | grpidcl | ⊢ ( 𝑊  ∈  Grp  →   0   ∈  𝑉 ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( 𝑊  ∈  PreHil  →   0   ∈  𝑉 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →   0   ∈  𝑉 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =   0   →  ( 𝑥  ,  𝐴 )  =  (  0   ,  𝐴 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) )  =  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) ) | 
						
							| 13 |  | ovex | ⊢ (  0   ,  𝐴 )  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ (  0   ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) ) ‘  0  )  =  (  0   ,  𝐴 ) ) | 
						
							| 15 | 10 14 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) ) ‘  0  )  =  (  0   ,  𝐴 ) ) | 
						
							| 16 | 1 2 3 12 | phllmhm | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 17 |  | lmghm | ⊢ ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) )  ∈  ( 𝑊  GrpHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 18 |  | rlm0 | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 19 | 4 18 | eqtri | ⊢ 𝑍  =  ( 0g ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 20 | 5 19 | ghmid | ⊢ ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) )  ∈  ( 𝑊  GrpHom  ( ringLMod ‘ 𝐹 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) ) ‘  0  )  =  𝑍 ) | 
						
							| 21 | 16 17 20 | 3syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐴 ) ) ‘  0  )  =  𝑍 ) | 
						
							| 22 | 15 21 | eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  (  0   ,  𝐴 )  =  𝑍 ) |