Metamath Proof Explorer


Theorem ip0r

Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
phllmhm.h , = ( ·𝑖𝑊 )
phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
ip0l.z 𝑍 = ( 0g𝐹 )
ip0l.o 0 = ( 0g𝑊 )
Assertion ip0r ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( 𝐴 , 0 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
2 phllmhm.h , = ( ·𝑖𝑊 )
3 phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
4 ip0l.z 𝑍 = ( 0g𝐹 )
5 ip0l.o 0 = ( 0g𝑊 )
6 1 2 3 4 5 ip0l ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( 0 , 𝐴 ) = 𝑍 )
7 6 fveq2d ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( ( *𝑟𝐹 ) ‘ 𝑍 ) )
8 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
9 8 adantr ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → 𝑊 ∈ LMod )
10 3 5 lmod0vcl ( 𝑊 ∈ LMod → 0𝑉 )
11 9 10 syl ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → 0𝑉 )
12 eqid ( *𝑟𝐹 ) = ( *𝑟𝐹 )
13 1 2 3 12 ipcj ( ( 𝑊 ∈ PreHil ∧ 0𝑉𝐴𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) )
14 13 3expa ( ( ( 𝑊 ∈ PreHil ∧ 0𝑉 ) ∧ 𝐴𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) )
15 14 an32s ( ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) ∧ 0𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) )
16 11 15 mpdan ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( ( *𝑟𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) )
17 1 phlsrng ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring )
18 17 adantr ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → 𝐹 ∈ *-Ring )
19 12 4 srng0 ( 𝐹 ∈ *-Ring → ( ( *𝑟𝐹 ) ‘ 𝑍 ) = 𝑍 )
20 18 19 syl ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( ( *𝑟𝐹 ) ‘ 𝑍 ) = 𝑍 )
21 7 16 20 3eqtr3d ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉 ) → ( 𝐴 , 0 ) = 𝑍 )