| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ip0l.z | ⊢ 𝑍  =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ip0l.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 6 | 1 2 3 4 5 | ip0l | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  (  0   ,  𝐴 )  =  𝑍 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ (  0   ,  𝐴 ) )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) | 
						
							| 8 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 10 | 3 5 | lmod0vcl | ⊢ ( 𝑊  ∈  LMod  →   0   ∈  𝑉 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →   0   ∈  𝑉 ) | 
						
							| 12 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 13 | 1 2 3 12 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧   0   ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ (  0   ,  𝐴 ) )  =  ( 𝐴  ,   0  ) ) | 
						
							| 14 | 13 | 3expa | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧   0   ∈  𝑉 )  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ (  0   ,  𝐴 ) )  =  ( 𝐴  ,   0  ) ) | 
						
							| 15 | 14 | an32s | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  ∧   0   ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ (  0   ,  𝐴 ) )  =  ( 𝐴  ,   0  ) ) | 
						
							| 16 | 11 15 | mpdan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ (  0   ,  𝐴 ) )  =  ( 𝐴  ,   0  ) ) | 
						
							| 17 | 1 | phlsrng | ⊢ ( 𝑊  ∈  PreHil  →  𝐹  ∈  *-Ring ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  𝐹  ∈  *-Ring ) | 
						
							| 19 | 12 4 | srng0 | ⊢ ( 𝐹  ∈  *-Ring  →  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 )  =  𝑍 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 )  =  𝑍 ) | 
						
							| 21 | 7 16 20 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,   0  )  =  𝑍 ) |