Metamath Proof Explorer


Theorem ip2di

Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
phllmhm.h , = ( ·𝑖𝑊 )
phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
ipdir.g + = ( +g𝑊 )
ipdir.p = ( +g𝐹 )
ip2di.1 ( 𝜑𝑊 ∈ PreHil )
ip2di.2 ( 𝜑𝐴𝑉 )
ip2di.3 ( 𝜑𝐵𝑉 )
ip2di.4 ( 𝜑𝐶𝑉 )
ip2di.5 ( 𝜑𝐷𝑉 )
Assertion ip2di ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( 𝐵 , 𝐷 ) ) ( ( 𝐴 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
2 phllmhm.h , = ( ·𝑖𝑊 )
3 phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
4 ipdir.g + = ( +g𝑊 )
5 ipdir.p = ( +g𝐹 )
6 ip2di.1 ( 𝜑𝑊 ∈ PreHil )
7 ip2di.2 ( 𝜑𝐴𝑉 )
8 ip2di.3 ( 𝜑𝐵𝑉 )
9 ip2di.4 ( 𝜑𝐶𝑉 )
10 ip2di.5 ( 𝜑𝐷𝑉 )
11 phllmod ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod )
12 6 11 syl ( 𝜑𝑊 ∈ LMod )
13 3 4 lmodvacl ( ( 𝑊 ∈ LMod ∧ 𝐶𝑉𝐷𝑉 ) → ( 𝐶 + 𝐷 ) ∈ 𝑉 )
14 12 9 10 13 syl3anc ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ 𝑉 )
15 1 2 3 4 5 ipdir ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) )
16 6 7 8 14 15 syl13anc ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) )
17 1 2 3 4 5 ipdi ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐶𝑉𝐷𝑉 ) ) → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( 𝐴 , 𝐷 ) ) )
18 6 7 9 10 17 syl13anc ( 𝜑 → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( 𝐴 , 𝐷 ) ) )
19 1 2 3 4 5 ipdi ( ( 𝑊 ∈ PreHil ∧ ( 𝐵𝑉𝐶𝑉𝐷𝑉 ) ) → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ( 𝐵 , 𝐷 ) ) )
20 6 8 9 10 19 syl13anc ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ( 𝐵 , 𝐷 ) ) )
21 1 phlsrng ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring )
22 srngring ( 𝐹 ∈ *-Ring → 𝐹 ∈ Ring )
23 ringcmn ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd )
24 6 21 22 23 4syl ( 𝜑𝐹 ∈ CMnd )
25 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
26 1 2 3 25 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) )
27 6 8 9 26 syl3anc ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) )
28 1 2 3 25 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝐵𝑉𝐷𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) )
29 6 8 10 28 syl3anc ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) )
30 25 5 cmncom ( ( 𝐹 ∈ CMnd ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐵 , 𝐶 ) ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) )
31 24 27 29 30 syl3anc ( 𝜑 → ( ( 𝐵 , 𝐶 ) ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) )
32 20 31 eqtrd ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) )
33 18 32 oveq12d ( 𝜑 → ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( 𝐴 , 𝐷 ) ) ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) )
34 1 2 3 25 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) )
35 6 7 9 34 syl3anc ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) )
36 1 2 3 25 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉𝐷𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) )
37 6 7 10 36 syl3anc ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) )
38 25 5 cmn4 ( ( 𝐹 ∈ CMnd ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) ( 𝐴 , 𝐷 ) ) ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( 𝐵 , 𝐷 ) ) ( ( 𝐴 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) )
39 24 35 37 29 27 38 syl122anc ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) ( 𝐴 , 𝐷 ) ) ( ( 𝐵 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( 𝐵 , 𝐷 ) ) ( ( 𝐴 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) )
40 16 33 39 3eqtrd ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( 𝐵 , 𝐷 ) ) ( ( 𝐴 , 𝐷 ) ( 𝐵 , 𝐶 ) ) ) )