Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ipdir.g |
⊢ + = ( +g ‘ 𝑊 ) |
5 |
|
ipdir.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
6 |
|
ip2di.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
7 |
|
ip2di.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
8 |
|
ip2di.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
9 |
|
ip2di.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
10 |
|
ip2di.5 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
11 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
13 |
3 4
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 + 𝐷 ) ∈ 𝑉 ) |
14 |
12 9 10 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ 𝑉 ) |
15 |
1 2 3 4 5
|
ipdir |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) ) |
16 |
6 7 8 14 15
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) ) |
17 |
1 2 3 4 5
|
ipdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ) |
18 |
6 7 9 10 17
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ) |
19 |
1 2 3 4 5
|
ipdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ) |
20 |
6 8 9 10 19
|
syl13anc |
⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ) |
21 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
22 |
|
srngring |
⊢ ( 𝐹 ∈ *-Ring → 𝐹 ∈ Ring ) |
23 |
|
ringcmn |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd ) |
24 |
6 21 22 23
|
4syl |
⊢ ( 𝜑 → 𝐹 ∈ CMnd ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
26 |
1 2 3 25
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
27 |
6 8 9 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
28 |
1 2 3 25
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
29 |
6 8 10 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
30 |
25 5
|
cmncom |
⊢ ( ( 𝐹 ∈ CMnd ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
31 |
24 27 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
32 |
20 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
33 |
18 32
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
34 |
1 2 3 25
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
35 |
6 7 9 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
36 |
1 2 3 25
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
37 |
6 7 10 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
38 |
25 5
|
cmn4 |
⊢ ( ( 𝐹 ∈ CMnd ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
39 |
24 35 37 29 27 38
|
syl122anc |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
40 |
16 33 39
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |