Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ip1i.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
ip1i.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
ip1i.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
5 |
|
ip1i.9 |
⊢ 𝑈 ∈ CPreHilOLD |
6 |
|
ip2i.8 |
⊢ 𝐴 ∈ 𝑋 |
7 |
|
ip2i.9 |
⊢ 𝐵 ∈ 𝑋 |
8 |
5
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
9 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 ) |
10 |
8 6 6 9
|
mp3an |
⊢ ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 |
11 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
12 |
8 10 7 11
|
mp3an |
⊢ ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) ∈ ℂ |
13 |
12
|
addid1i |
⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + 0 ) = ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) |
14 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
15 |
1 2 3 14
|
nvrinv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
16 |
8 6 15
|
mp2an |
⊢ ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) = ( 0vec ‘ 𝑈 ) |
17 |
16
|
oveq1i |
⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) |
18 |
1 14 4
|
dip0l |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 ) |
19 |
8 7 18
|
mp2an |
⊢ ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 |
20 |
17 19
|
eqtri |
⊢ ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) = 0 |
21 |
20
|
oveq2i |
⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) = ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + 0 ) |
22 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
23 |
22
|
oveq1i |
⊢ ( 2 𝑆 𝐴 ) = ( ( 1 + 1 ) 𝑆 𝐴 ) |
24 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
25 |
24 24 6
|
3pm3.2i |
⊢ ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) |
26 |
1 2 3
|
nvdir |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 1 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
27 |
8 25 26
|
mp2an |
⊢ ( ( 1 + 1 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) |
28 |
1 3
|
nvsid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
29 |
8 6 28
|
mp2an |
⊢ ( 1 𝑆 𝐴 ) = 𝐴 |
30 |
29 29
|
oveq12i |
⊢ ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝐴 ) |
31 |
27 30
|
eqtri |
⊢ ( ( 1 + 1 ) 𝑆 𝐴 ) = ( 𝐴 𝐺 𝐴 ) |
32 |
23 31
|
eqtri |
⊢ ( 2 𝑆 𝐴 ) = ( 𝐴 𝐺 𝐴 ) |
33 |
32
|
oveq1i |
⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) |
34 |
13 21 33
|
3eqtr4ri |
⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
35 |
1 2 3 4 5 6 6 7
|
ip1i |
⊢ ( ( ( 𝐴 𝐺 𝐴 ) 𝑃 𝐵 ) + ( ( 𝐴 𝐺 ( - 1 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) = ( 2 · ( 𝐴 𝑃 𝐵 ) ) |
36 |
34 35
|
eqtri |
⊢ ( ( 2 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 2 · ( 𝐴 𝑃 𝐵 ) ) |