Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ipsubdir.m |
⊢ − = ( -g ‘ 𝑊 ) |
5 |
|
ipsubdir.s |
⊢ 𝑆 = ( -g ‘ 𝐹 ) |
6 |
|
ip2subdi.p |
⊢ + = ( +g ‘ 𝐹 ) |
7 |
|
ip2subdi.1 |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
8 |
|
ip2subdi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
9 |
|
ip2subdi.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
10 |
|
ip2subdi.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
11 |
|
ip2subdi.5 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
13 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
17 |
|
ringabl |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Abel ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Abel ) |
19 |
1 2 3 12
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
20 |
7 8 10 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
21 |
1 2 3 12
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
22 |
7 8 11 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
23 |
1 2 3 12
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
24 |
7 9 10 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
25 |
12 6 5 18 20 22 24
|
ablsubsub4 |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
27 |
3 4
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 − 𝐷 ) ∈ 𝑉 ) |
28 |
14 10 11 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) ∈ 𝑉 ) |
29 |
1 2 3 4 5
|
ipsubdir |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( 𝐶 − 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) ) |
30 |
7 8 9 28 29
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) ) |
31 |
1 2 3 4 5
|
ipsubdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ) |
32 |
7 8 10 11 31
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ) |
33 |
1 2 3 4 5
|
ipsubdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) |
34 |
7 9 10 11 33
|
syl13anc |
⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) |
35 |
32 34
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) ) |
36 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
37 |
16 36
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
38 |
12 5
|
grpsubcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ∈ ( Base ‘ 𝐹 ) ) |
39 |
37 20 22 38
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ∈ ( Base ‘ 𝐹 ) ) |
40 |
1 2 3 12
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
41 |
7 9 11 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
42 |
12 6 5 18 39 24 41
|
ablsubsub |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) = ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) ) |
43 |
30 35 42
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) ) |
44 |
12 6
|
ringacl |
⊢ ( ( 𝐹 ∈ Ring ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) |
45 |
16 22 24 44
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) |
46 |
12 6 5
|
abladdsub |
⊢ ( ( 𝐹 ∈ Abel ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
47 |
18 20 41 45 46
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
48 |
26 43 47
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |