| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipdir.f | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | ipass.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | ipass.p | ⊢  ×   =  ( .r ‘ 𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  =  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) | 
						
							| 8 | 1 2 3 7 | phllmhm | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐶  ∈  𝑉 )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 9 | 8 | 3ad2antr3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 10 |  | simpr1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐴  ∈  𝐾 ) | 
						
							| 11 |  | simpr2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 12 |  | rlmvsca | ⊢ ( .r ‘ 𝐹 )  =  (  ·𝑠  ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 13 | 6 12 | eqtri | ⊢  ×   =  (  ·𝑠  ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 14 | 1 4 3 5 13 | lmhmlin | ⊢ ( ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  ·  𝐵 ) )  =  ( 𝐴  ×  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) ) ) | 
						
							| 15 | 9 10 11 14 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  ·  𝐵 ) )  =  ( 𝐴  ×  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) ) ) | 
						
							| 16 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝑊  ∈  LMod ) | 
						
							| 18 | 3 1 5 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ·  𝐵 )  ∈  𝑉 ) | 
						
							| 19 | 17 10 11 18 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐴  ·  𝐵 )  ∈  𝑉 ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐴  ·  𝐵 )  →  ( 𝑥  ,  𝐶 )  =  ( ( 𝐴  ·  𝐵 )  ,  𝐶 ) ) | 
						
							| 21 |  | ovex | ⊢ ( 𝑥  ,  𝐶 )  ∈  V | 
						
							| 22 | 20 7 21 | fvmpt3i | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( 𝐴  ·  𝐵 )  ,  𝐶 ) ) | 
						
							| 23 | 19 22 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( 𝐴  ·  𝐵 )  ,  𝐶 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ,  𝐶 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 25 | 24 7 21 | fvmpt3i | ⊢ ( 𝐵  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 26 | 11 25 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐴  ×  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) )  =  ( 𝐴  ×  ( 𝐵  ,  𝐶 ) ) ) | 
						
							| 28 | 15 23 27 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐴  ·  𝐵 )  ,  𝐶 )  =  ( 𝐴  ×  ( 𝐵  ,  𝐶 ) ) ) |