Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ip1i.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
ip1i.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
ip1i.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
5 |
|
ip1i.9 |
⊢ 𝑈 ∈ CPreHilOLD |
6 |
|
ipasslem1.b |
⊢ 𝐵 ∈ 𝑋 |
7 |
|
elznn0nn |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
8 |
1 2 3 4 5 6
|
ipasslem1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
9 |
|
nnnn0 |
⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) |
10 |
1 2 3 4 5 6
|
ipasslem2 |
⊢ ( ( - 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
11 |
9 10
|
sylan |
⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
13 |
|
recn |
⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) |
14 |
13
|
negnegd |
⊢ ( 𝑁 ∈ ℝ → - - 𝑁 = 𝑁 ) |
15 |
14
|
oveq1d |
⊢ ( 𝑁 ∈ ℝ → ( - - 𝑁 𝑆 𝐴 ) = ( 𝑁 𝑆 𝐴 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑁 ∈ ℝ → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
18 |
14
|
oveq1d |
⊢ ( 𝑁 ∈ ℝ → ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
20 |
12 17 19
|
3eqtr3d |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
21 |
8 20
|
jaoian |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
22 |
7 21
|
sylanb |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |