| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ip1i.1 | 
							⊢ 𝑋  =  ( BaseSet ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							ip1i.2 | 
							⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							ip1i.4 | 
							⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 )  | 
						
						
							| 4 | 
							
								
							 | 
							ip1i.7 | 
							⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							ip1i.9 | 
							⊢ 𝑈  ∈  CPreHilOLD  | 
						
						
							| 6 | 
							
								
							 | 
							ipasslem1.b | 
							⊢ 𝐵  ∈  𝑋  | 
						
						
							| 7 | 
							
								
							 | 
							elq | 
							⊢ ( 𝐶  ∈  ℚ  ↔  ∃ 𝑗  ∈  ℤ ∃ 𝑘  ∈  ℕ 𝐶  =  ( 𝑗  /  𝑘 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							zcn | 
							⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							nnrecre | 
							⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								5
							 | 
							phnvi | 
							⊢ 𝑈  ∈  NrmCVec  | 
						
						
							| 12 | 
							
								1 4
							 | 
							dipcl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑃 𝐵 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								11 6 12
							 | 
							mp3an13 | 
							⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴 𝑃 𝐵 )  ∈  ℂ )  | 
						
						
							| 14 | 
							
								
							 | 
							mulass | 
							⊢ ( ( 𝑗  ∈  ℂ  ∧  ( 1  /  𝑘 )  ∈  ℂ  ∧  ( 𝐴 𝑃 𝐵 )  ∈  ℂ )  →  ( ( 𝑗  ·  ( 1  /  𝑘 ) )  ·  ( 𝐴 𝑃 𝐵 ) )  =  ( 𝑗  ·  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 15 | 
							
								8 10 13 14
							 | 
							syl3an | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  ·  ( 1  /  𝑘 ) )  ·  ( 𝐴 𝑃 𝐵 ) )  =  ( 𝑗  ·  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 16 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  𝑗  ∈  ℂ )  | 
						
						
							| 17 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ )  | 
						
						
							| 19 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  𝑘  ≠  0 )  | 
						
						
							| 21 | 
							
								16 18 20
							 | 
							divrecd | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  ( 𝑗  /  𝑘 )  =  ( 𝑗  ·  ( 1  /  𝑘 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3adant3 | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑗  /  𝑘 )  =  ( 𝑗  ·  ( 1  /  𝑘 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) )  =  ( ( 𝑗  ·  ( 1  /  𝑘 ) )  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 24 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 )  =  ( ( 𝑗  ·  ( 1  /  𝑘 ) ) 𝑆 𝐴 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  ∈  𝑋  →  𝐴  ∈  𝑋 )  | 
						
						
							| 26 | 
							
								1 3
							 | 
							nvsass | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝑗  ∈  ℂ  ∧  ( 1  /  𝑘 )  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑗  ·  ( 1  /  𝑘 ) ) 𝑆 𝐴 )  =  ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) )  | 
						
						
							| 27 | 
							
								11 26
							 | 
							mpan | 
							⊢ ( ( 𝑗  ∈  ℂ  ∧  ( 1  /  𝑘 )  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  ·  ( 1  /  𝑘 ) ) 𝑆 𝐴 )  =  ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) )  | 
						
						
							| 28 | 
							
								8 10 25 27
							 | 
							syl3an | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  ·  ( 1  /  𝑘 ) ) 𝑆 𝐴 )  =  ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) )  | 
						
						
							| 29 | 
							
								24 28
							 | 
							eqtrd | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 )  =  ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1d | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							nvscl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 1  /  𝑘 )  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( ( 1  /  𝑘 ) 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 32 | 
							
								11 31
							 | 
							mp3an1 | 
							⊢ ( ( ( 1  /  𝑘 )  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( ( 1  /  𝑘 ) 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 33 | 
							
								10 32
							 | 
							sylan | 
							⊢ ( ( 𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 1  /  𝑘 ) 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6
							 | 
							ipasslem3 | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  ( ( 1  /  𝑘 ) 𝑆 𝐴 )  ∈  𝑋 )  →  ( ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 )  =  ( 𝑗  ·  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							sylan2 | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  ( 𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 )  =  ( 𝑗  ·  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3impb | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑗 𝑆 ( ( 1  /  𝑘 ) 𝑆 𝐴 ) ) 𝑃 𝐵 )  =  ( 𝑗  ·  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5 6
							 | 
							ipasslem4 | 
							⊢ ( ( 𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3adant1 | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq2d | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑗  ·  ( ( ( 1  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) )  =  ( 𝑗  ·  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 40 | 
							
								30 36 39
							 | 
							3eqtrd | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝑗  ·  ( ( 1  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 41 | 
							
								15 23 40
							 | 
							3eqtr4rd | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 𝑗  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( 𝐶 𝑆 𝐴 )  =  ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							⊢ ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) )  =  ( ( 𝑗  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqeq12d | 
							⊢ ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) )  ↔  ( ( ( 𝑗  /  𝑘 ) 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 𝑗  /  𝑘 )  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ  ∧  𝐴  ∈  𝑋 )  →  ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3expia | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ∈  𝑋  →  ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							com23 | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℕ )  →  ( 𝐶  =  ( 𝑗  /  𝑘 )  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							rexlimivv | 
							⊢ ( ∃ 𝑗  ∈  ℤ ∃ 𝑘  ∈  ℕ 𝐶  =  ( 𝑗  /  𝑘 )  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 50 | 
							
								7 49
							 | 
							sylbi | 
							⊢ ( 𝐶  ∈  ℚ  →  ( 𝐴  ∈  𝑋  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							imp | 
							⊢ ( ( 𝐶  ∈  ℚ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝐶  ·  ( 𝐴 𝑃 𝐵 ) ) )  |