| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ip1i.1 | 
							⊢ 𝑋  =  ( BaseSet ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							ip1i.2 | 
							⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							ip1i.4 | 
							⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 )  | 
						
						
							| 4 | 
							
								
							 | 
							ip1i.7 | 
							⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							ip1i.9 | 
							⊢ 𝑈  ∈  CPreHilOLD  | 
						
						
							| 6 | 
							
								
							 | 
							ipasslem7.a | 
							⊢ 𝐴  ∈  𝑋  | 
						
						
							| 7 | 
							
								
							 | 
							ipasslem7.b | 
							⊢ 𝐵  ∈  𝑋  | 
						
						
							| 8 | 
							
								
							 | 
							ipasslem7.f | 
							⊢ 𝐹  =  ( 𝑤  ∈  ℝ  ↦  ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑤  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 10 | 
							
								
							 | 
							qre | 
							⊢ ( 𝑥  ∈  ℚ  →  𝑥  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤 𝑆 𝐴 )  =  ( 𝑥 𝑆 𝐴 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq1d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ·  ( 𝐴 𝑃 𝐵 ) )  =  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							oveq12d | 
							⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑤  ·  ( 𝐴 𝑃 𝐵 ) ) )  =  ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) )  ∈  V  | 
						
						
							| 16 | 
							
								14 8 15
							 | 
							fvmpt | 
							⊢ ( 𝑥  ∈  ℝ  →  ( 𝐹 ‘ 𝑥 )  =  ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							syl | 
							⊢ ( 𝑥  ∈  ℚ  →  ( 𝐹 ‘ 𝑥 )  =  ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							qcn | 
							⊢ ( 𝑥  ∈  ℚ  →  𝑥  ∈  ℂ )  | 
						
						
							| 19 | 
							
								5
							 | 
							phnvi | 
							⊢ 𝑈  ∈  NrmCVec  | 
						
						
							| 20 | 
							
								1 3
							 | 
							nvscl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑥  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							mp3an1 | 
							⊢ ( ( 𝑥  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							sylan | 
							⊢ ( ( 𝑥  ∈  ℚ  ∧  𝐴  ∈  𝑋 )  →  ( 𝑥 𝑆 𝐴 )  ∈  𝑋 )  | 
						
						
							| 23 | 
							
								1 4
							 | 
							dipcl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  ( 𝑥 𝑆 𝐴 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  ∈  ℂ )  | 
						
						
							| 24 | 
							
								19 7 23
							 | 
							mp3an13 | 
							⊢ ( ( 𝑥 𝑆 𝐴 )  ∈  𝑋  →  ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							syl | 
							⊢ ( ( 𝑥  ∈  ℚ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  ∈  ℂ )  | 
						
						
							| 26 | 
							
								1 2 3 4 5 7
							 | 
							ipasslem5 | 
							⊢ ( ( 𝑥  ∈  ℚ  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  =  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							subeq0bd | 
							⊢ ( ( 𝑥  ∈  ℚ  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) )  =  0 )  | 
						
						
							| 28 | 
							
								6 27
							 | 
							mpan2 | 
							⊢ ( 𝑥  ∈  ℚ  →  ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑥  ·  ( 𝐴 𝑃 𝐵 ) ) )  =  0 )  | 
						
						
							| 29 | 
							
								17 28
							 | 
							eqtrd | 
							⊢ ( 𝑥  ∈  ℚ  →  ( 𝐹 ‘ 𝑥 )  =  0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							rgen | 
							⊢ ∀ 𝑥  ∈  ℚ ( 𝐹 ‘ 𝑥 )  =  0  | 
						
						
							| 31 | 
							
								8
							 | 
							funmpt2 | 
							⊢ Fun  𝐹  | 
						
						
							| 32 | 
							
								
							 | 
							qssre | 
							⊢ ℚ  ⊆  ℝ  | 
						
						
							| 33 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 )  −  ( 𝑤  ·  ( 𝐴 𝑃 𝐵 ) ) )  ∈  V  | 
						
						
							| 34 | 
							
								33 8
							 | 
							dmmpti | 
							⊢ dom  𝐹  =  ℝ  | 
						
						
							| 35 | 
							
								32 34
							 | 
							sseqtrri | 
							⊢ ℚ  ⊆  dom  𝐹  | 
						
						
							| 36 | 
							
								
							 | 
							funconstss | 
							⊢ ( ( Fun  𝐹  ∧  ℚ  ⊆  dom  𝐹 )  →  ( ∀ 𝑥  ∈  ℚ ( 𝐹 ‘ 𝑥 )  =  0  ↔  ℚ  ⊆  ( ◡ 𝐹  “  { 0 } ) ) )  | 
						
						
							| 37 | 
							
								31 35 36
							 | 
							mp2an | 
							⊢ ( ∀ 𝑥  ∈  ℚ ( 𝐹 ‘ 𝑥 )  =  0  ↔  ℚ  ⊆  ( ◡ 𝐹  “  { 0 } ) )  | 
						
						
							| 38 | 
							
								30 37
							 | 
							mpbi | 
							⊢ ℚ  ⊆  ( ◡ 𝐹  “  { 0 } )  | 
						
						
							| 39 | 
							
								
							 | 
							qdensere | 
							⊢ ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  =  ℝ  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld )  | 
						
						
							| 41 | 
							
								40
							 | 
							cnfldhaus | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  Haus  | 
						
						
							| 42 | 
							
								
							 | 
							haust1 | 
							⊢ ( ( TopOpen ‘ ℂfld )  ∈  Haus  →  ( TopOpen ‘ ℂfld )  ∈  Fre )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							ax-mp | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  Fre  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) )  | 
						
						
							| 45 | 
							
								1 2 3 4 5 6 7 8 44 40
							 | 
							ipasslem7 | 
							⊢ 𝐹  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( TopOpen ‘ ℂfld ) )  | 
						
						
							| 46 | 
							
								
							 | 
							uniretop | 
							⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) )  | 
						
						
							| 47 | 
							
								40
							 | 
							cnfldtopon | 
							⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  | 
						
						
							| 48 | 
							
								47
							 | 
							toponunii | 
							⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							dnsconst | 
							⊢ ( ( ( ( TopOpen ‘ ℂfld )  ∈  Fre  ∧  𝐹  ∈  ( ( topGen ‘ ran  (,) )  Cn  ( TopOpen ‘ ℂfld ) ) )  ∧  ( 0  ∈  ℂ  ∧  ℚ  ⊆  ( ◡ 𝐹  “  { 0 } )  ∧  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  =  ℝ ) )  →  𝐹 : ℝ ⟶ { 0 } )  | 
						
						
							| 50 | 
							
								43 45 49
							 | 
							mpanl12 | 
							⊢ ( ( 0  ∈  ℂ  ∧  ℚ  ⊆  ( ◡ 𝐹  “  { 0 } )  ∧  ( ( cls ‘ ( topGen ‘ ran  (,) ) ) ‘ ℚ )  =  ℝ )  →  𝐹 : ℝ ⟶ { 0 } )  | 
						
						
							| 51 | 
							
								9 38 39 50
							 | 
							mp3an | 
							⊢ 𝐹 : ℝ ⟶ { 0 }  |