Step |
Hyp |
Ref |
Expression |
1 |
|
ip1i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ip1i.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
ip1i.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
ip1i.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
5 |
|
ip1i.9 |
⊢ 𝑈 ∈ CPreHilOLD |
6 |
|
ipasslem7.a |
⊢ 𝐴 ∈ 𝑋 |
7 |
|
ipasslem7.b |
⊢ 𝐵 ∈ 𝑋 |
8 |
|
ipasslem7.f |
⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
9 |
|
0cn |
⊢ 0 ∈ ℂ |
10 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
11 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝑆 𝐴 ) = ( 𝑥 𝑆 𝐴 ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
13 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑤 = 𝑥 → ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
15 |
|
ovex |
⊢ ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ V |
16 |
14 8 15
|
fvmpt |
⊢ ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
17 |
10 16
|
syl |
⊢ ( 𝑥 ∈ ℚ → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
18 |
|
qcn |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℂ ) |
19 |
5
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
20 |
1 3
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
21 |
19 20
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
22 |
18 21
|
sylan |
⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
23 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
24 |
19 7 23
|
mp3an13 |
⊢ ( ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
25 |
22 24
|
syl |
⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) ∈ ℂ ) |
26 |
1 2 3 4 5 7
|
ipasslem5 |
⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) |
27 |
25 26
|
subeq0bd |
⊢ ( ( 𝑥 ∈ ℚ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ) |
28 |
6 27
|
mpan2 |
⊢ ( 𝑥 ∈ ℚ → ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) = 0 ) |
29 |
17 28
|
eqtrd |
⊢ ( 𝑥 ∈ ℚ → ( 𝐹 ‘ 𝑥 ) = 0 ) |
30 |
29
|
rgen |
⊢ ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 |
31 |
8
|
funmpt2 |
⊢ Fun 𝐹 |
32 |
|
qssre |
⊢ ℚ ⊆ ℝ |
33 |
|
ovex |
⊢ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ V |
34 |
33 8
|
dmmpti |
⊢ dom 𝐹 = ℝ |
35 |
32 34
|
sseqtrri |
⊢ ℚ ⊆ dom 𝐹 |
36 |
|
funconstss |
⊢ ( ( Fun 𝐹 ∧ ℚ ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 ↔ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ) ) |
37 |
31 35 36
|
mp2an |
⊢ ( ∀ 𝑥 ∈ ℚ ( 𝐹 ‘ 𝑥 ) = 0 ↔ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
38 |
30 37
|
mpbi |
⊢ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) |
39 |
|
qdensere |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |
40 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
41 |
40
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
42 |
|
haust1 |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Haus → ( TopOpen ‘ ℂfld ) ∈ Fre ) |
43 |
41 42
|
ax-mp |
⊢ ( TopOpen ‘ ℂfld ) ∈ Fre |
44 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
45 |
1 2 3 4 5 6 7 8 44 40
|
ipasslem7 |
⊢ 𝐹 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) |
46 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
47 |
40
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
48 |
47
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
49 |
46 48
|
dnsconst |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ Fre ∧ 𝐹 ∈ ( ( topGen ‘ ran (,) ) Cn ( TopOpen ‘ ℂfld ) ) ) ∧ ( 0 ∈ ℂ ∧ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ∧ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ ) ) → 𝐹 : ℝ ⟶ { 0 } ) |
50 |
43 45 49
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ ℚ ⊆ ( ◡ 𝐹 “ { 0 } ) ∧ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ ) → 𝐹 : ℝ ⟶ { 0 } ) |
51 |
9 38 39 50
|
mp3an |
⊢ 𝐹 : ℝ ⟶ { 0 } |