| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipdir.f | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | ipass.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | ipass.p | ⊢  ×   =  ( .r ‘ 𝐹 ) | 
						
							| 7 |  | ipassr.i | ⊢  ∗   =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 9 |  | simpr3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝐶  ∈  𝐾 ) | 
						
							| 10 |  | simpr2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 11 |  | simpr1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 12 | 1 2 3 4 5 6 | ipass | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐶  ∈  𝐾  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 ) )  →  ( ( 𝐶  ·  𝐵 )  ,  𝐴 )  =  ( 𝐶  ×  ( 𝐵  ,  𝐴 ) ) ) | 
						
							| 13 | 8 9 10 11 12 | syl13anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( ( 𝐶  ·  𝐵 )  ,  𝐴 )  =  ( 𝐶  ×  ( 𝐵  ,  𝐴 ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  (  ∗  ‘ ( ( 𝐶  ·  𝐵 )  ,  𝐴 ) )  =  (  ∗  ‘ ( 𝐶  ×  ( 𝐵  ,  𝐴 ) ) ) ) | 
						
							| 15 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝑊  ∈  LMod ) | 
						
							| 17 | 3 1 5 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐶  ∈  𝐾  ∧  𝐵  ∈  𝑉 )  →  ( 𝐶  ·  𝐵 )  ∈  𝑉 ) | 
						
							| 18 | 16 9 10 17 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( 𝐶  ·  𝐵 )  ∈  𝑉 ) | 
						
							| 19 | 1 2 3 7 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐶  ·  𝐵 )  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  (  ∗  ‘ ( ( 𝐶  ·  𝐵 )  ,  𝐴 ) )  =  ( 𝐴  ,  ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 20 | 8 18 11 19 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  (  ∗  ‘ ( ( 𝐶  ·  𝐵 )  ,  𝐴 ) )  =  ( 𝐴  ,  ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 21 | 1 | phlsrng | ⊢ ( 𝑊  ∈  PreHil  →  𝐹  ∈  *-Ring ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  𝐹  ∈  *-Ring ) | 
						
							| 23 | 1 2 3 4 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐵  ,  𝐴 )  ∈  𝐾 ) | 
						
							| 24 | 8 10 11 23 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( 𝐵  ,  𝐴 )  ∈  𝐾 ) | 
						
							| 25 | 7 4 6 | srngmul | ⊢ ( ( 𝐹  ∈  *-Ring  ∧  𝐶  ∈  𝐾  ∧  ( 𝐵  ,  𝐴 )  ∈  𝐾 )  →  (  ∗  ‘ ( 𝐶  ×  ( 𝐵  ,  𝐴 ) ) )  =  ( (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  ×  (  ∗  ‘ 𝐶 ) ) ) | 
						
							| 26 | 22 9 24 25 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  (  ∗  ‘ ( 𝐶  ×  ( 𝐵  ,  𝐴 ) ) )  =  ( (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  ×  (  ∗  ‘ 𝐶 ) ) ) | 
						
							| 27 | 14 20 26 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( 𝐴  ,  ( 𝐶  ·  𝐵 ) )  =  ( (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  ×  (  ∗  ‘ 𝐶 ) ) ) | 
						
							| 28 | 1 2 3 7 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 29 | 8 10 11 28 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( (  ∗  ‘ ( 𝐵  ,  𝐴 ) )  ×  (  ∗  ‘ 𝐶 ) )  =  ( ( 𝐴  ,  𝐵 )  ×  (  ∗  ‘ 𝐶 ) ) ) | 
						
							| 31 | 27 30 | eqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝐾 ) )  →  ( 𝐴  ,  ( 𝐶  ·  𝐵 ) )  =  ( ( 𝐴  ,  𝐵 )  ×  (  ∗  ‘ 𝐶 ) ) ) |