Metamath Proof Explorer


Theorem ipassr2

Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
phllmhm.h , = ( ·𝑖𝑊 )
phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
ipdir.f 𝐾 = ( Base ‘ 𝐹 )
ipass.s · = ( ·𝑠𝑊 )
ipass.p × = ( .r𝐹 )
ipassr.i = ( *𝑟𝐹 )
Assertion ipassr2 ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × 𝐶 ) = ( 𝐴 , ( ( 𝐶 ) · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 phlsrng.f 𝐹 = ( Scalar ‘ 𝑊 )
2 phllmhm.h , = ( ·𝑖𝑊 )
3 phllmhm.v 𝑉 = ( Base ‘ 𝑊 )
4 ipdir.f 𝐾 = ( Base ‘ 𝐹 )
5 ipass.s · = ( ·𝑠𝑊 )
6 ipass.p × = ( .r𝐹 )
7 ipassr.i = ( *𝑟𝐹 )
8 simpl ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → 𝑊 ∈ PreHil )
9 simpr1 ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → 𝐴𝑉 )
10 simpr2 ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → 𝐵𝑉 )
11 1 phlsrng ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring )
12 simpr3 ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → 𝐶𝐾 )
13 7 4 srngcl ( ( 𝐹 ∈ *-Ring ∧ 𝐶𝐾 ) → ( 𝐶 ) ∈ 𝐾 )
14 11 12 13 syl2an2r ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( 𝐶 ) ∈ 𝐾 )
15 1 2 3 4 5 6 7 ipassr ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉 ∧ ( 𝐶 ) ∈ 𝐾 ) ) → ( 𝐴 , ( ( 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ‘ ( 𝐶 ) ) ) )
16 8 9 10 14 15 syl13anc ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( 𝐴 , ( ( 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ‘ ( 𝐶 ) ) ) )
17 7 4 srngnvl ( ( 𝐹 ∈ *-Ring ∧ 𝐶𝐾 ) → ( ‘ ( 𝐶 ) ) = 𝐶 )
18 11 12 17 syl2an2r ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( ‘ ( 𝐶 ) ) = 𝐶 )
19 18 oveq2d ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × ( ‘ ( 𝐶 ) ) ) = ( ( 𝐴 , 𝐵 ) × 𝐶 ) )
20 16 19 eqtr2d ( ( 𝑊 ∈ PreHil ∧ ( 𝐴𝑉𝐵𝑉𝐶𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × 𝐶 ) = ( 𝐴 , ( ( 𝐶 ) · 𝐵 ) ) )