| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipblnfi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ipblnfi.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 3 |
|
ipblnfi.9 |
⊢ 𝑈 ∈ CPreHilOLD |
| 4 |
|
ipblnfi.c |
⊢ 𝐶 = 〈 〈 + , · 〉 , abs 〉 |
| 5 |
|
ipblnfi.l |
⊢ 𝐵 = ( 𝑈 BLnOp 𝐶 ) |
| 6 |
|
ipblnfi.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝑃 𝐴 ) ) |
| 7 |
3
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
| 8 |
1 2
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 9 |
7 8
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 11 |
10 6
|
fmptd |
⊢ ( 𝐴 ∈ 𝑋 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 12 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 13 |
1 12
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 14 |
7 13
|
mp3an1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 15 |
14
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 18 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 19 |
1 18 2
|
dipdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 20 |
3 19
|
mpan |
⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 21 |
15 16 17 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 22 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑦 ∈ ℂ ) |
| 23 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 24 |
1 18 12 2 3
|
ipassi |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 25 |
22 23 17 24
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 27 |
21 26
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 28 |
14
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 29 |
1 18
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 30 |
7 29
|
mp3an1 |
⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 31 |
28 30
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 32 |
31
|
anasss |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 33 |
|
oveq1 |
⊢ ( 𝑥 = ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) → ( 𝑥 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) |
| 34 |
|
ovex |
⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ∈ V |
| 35 |
33 6 34
|
fvmpt |
⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) |
| 36 |
32 35
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) |
| 37 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑃 𝐴 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 38 |
|
ovex |
⊢ ( 𝑧 𝑃 𝐴 ) ∈ V |
| 39 |
37 6 38
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 40 |
39
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 42 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝑃 𝐴 ) = ( 𝑤 𝑃 𝐴 ) ) |
| 43 |
|
ovex |
⊢ ( 𝑤 𝑃 𝐴 ) ∈ V |
| 44 |
42 6 43
|
fvmpt |
⊢ ( 𝑤 ∈ 𝑋 → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝑃 𝐴 ) ) |
| 45 |
44
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝑃 𝐴 ) ) |
| 46 |
41 45
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 47 |
27 36 46
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 48 |
47
|
ralrimivva |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 49 |
48
|
ralrimiva |
⊢ ( 𝐴 ∈ 𝑋 → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 50 |
4
|
cnnv |
⊢ 𝐶 ∈ NrmCVec |
| 51 |
4
|
cnnvba |
⊢ ℂ = ( BaseSet ‘ 𝐶 ) |
| 52 |
4
|
cnnvg |
⊢ + = ( +𝑣 ‘ 𝐶 ) |
| 53 |
4
|
cnnvs |
⊢ · = ( ·𝑠OLD ‘ 𝐶 ) |
| 54 |
|
eqid |
⊢ ( 𝑈 LnOp 𝐶 ) = ( 𝑈 LnOp 𝐶 ) |
| 55 |
1 51 18 52 12 53 54
|
islno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec ) → ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ↔ ( 𝐹 : 𝑋 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 56 |
7 50 55
|
mp2an |
⊢ ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ↔ ( 𝐹 : 𝑋 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 57 |
11 49 56
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑋 → 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ) |
| 58 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
| 59 |
1 58
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
| 60 |
7 59
|
mpan |
⊢ ( 𝐴 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
| 61 |
1 58 2 3
|
sii |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 62 |
61
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 63 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 64 |
63
|
fveq2d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ) |
| 65 |
60
|
recnd |
⊢ ( 𝐴 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ) |
| 66 |
1 58
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 67 |
7 66
|
mpan |
⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 68 |
67
|
recnd |
⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ) |
| 69 |
|
mulcom |
⊢ ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 70 |
65 68 69
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 71 |
62 64 70
|
3brtr4d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( 𝐴 ∈ 𝑋 → ∀ 𝑧 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 73 |
4
|
cnnvnm |
⊢ abs = ( normCV ‘ 𝐶 ) |
| 74 |
1 58 73 54 5 7 50
|
blo3i |
⊢ ( ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) → 𝐹 ∈ 𝐵 ) |
| 75 |
57 60 72 74
|
syl3anc |
⊢ ( 𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵 ) |