Step |
Hyp |
Ref |
Expression |
1 |
|
ipcau.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ipcau.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ipcau.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( toℂPreHil ‘ 𝑊 ) = ( toℂPreHil ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
simp1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) |
7 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
9 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
10 |
5 9
|
cphsca |
⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
11 |
6 10
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
12 |
5 9
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
13 |
6 12
|
sylan |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
14 |
1 2
|
ipge0 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
15 |
6 14
|
sylan |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
16 |
|
eqid |
⊢ ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) |
17 |
|
eqid |
⊢ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) |
18 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
19 |
|
simp3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) |
20 |
4 1 5 8 11 2 13 15 9 16 17 18 19
|
ipcau2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) · ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) ) |
21 |
4 3
|
cphtcphnm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ) |
22 |
6 21
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ) |
23 |
22
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) ) |
24 |
22
|
fveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) = ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) |
25 |
23 24
|
oveq12d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) · ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) ) |
26 |
20 25
|
breqtrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |