| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipcj.i | ⊢  ∗   =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 7 | 3 1 2 5 4 6 | isphl | ⊢ ( 𝑊  ∈  PreHil  ↔  ( 𝑊  ∈  LVec  ∧  𝐹  ∈  *-Ring  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  ( 0g ‘ 𝐹 )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) ) ) | 
						
							| 8 | 7 | simp3bi | ⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  ( 0g ‘ 𝐹 )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  ( 0g ‘ 𝐹 )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  ( 0g ‘ 𝐹 )  →  𝑥  =  ( 0g ‘ 𝑊 ) )  ∧  ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) | 
						
							| 12 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐴  →  (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  (  ∗  ‘ ( 𝐴  ,  𝑦 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  ,  𝑥 )  =  ( 𝑦  ,  𝐴 ) ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 )  ↔  (  ∗  ‘ ( 𝐴  ,  𝑦 ) )  =  ( 𝑦  ,  𝐴 ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ,  𝑦 )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑦  =  𝐵  →  (  ∗  ‘ ( 𝐴  ,  𝑦 ) )  =  (  ∗  ‘ ( 𝐴  ,  𝐵 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ,  𝐴 )  =  ( 𝐵  ,  𝐴 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( (  ∗  ‘ ( 𝐴  ,  𝑦 ) )  =  ( 𝑦  ,  𝐴 )  ↔  (  ∗  ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) ) | 
						
							| 19 | 14 18 | rspc2v | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 (  ∗  ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 )  →  (  ∗  ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) ) | 
						
							| 20 | 11 19 | syl5com | ⊢ ( 𝑊  ∈  PreHil  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  (  ∗  ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) ) | 
						
							| 21 | 20 | 3impib | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  (  ∗  ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) |