Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ipcj.i |
⊢ ∗ = ( *𝑟 ‘ 𝐹 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
7 |
3 1 2 5 4 6
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
8 |
7
|
simp3bi |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) |
9 |
|
simp3 |
⊢ ( ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = ( 0g ‘ 𝐹 ) → 𝑥 = ( 0g ‘ 𝑊 ) ) ∧ ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) |
12 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( ∗ ‘ ( 𝐴 , 𝑦 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 , 𝑥 ) = ( 𝑦 , 𝐴 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ↔ ( ∗ ‘ ( 𝐴 , 𝑦 ) ) = ( 𝑦 , 𝐴 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 , 𝑦 ) = ( 𝐴 , 𝐵 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( ∗ ‘ ( 𝐴 , 𝑦 ) ) = ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 , 𝐴 ) = ( 𝐵 , 𝐴 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ∗ ‘ ( 𝐴 , 𝑦 ) ) = ( 𝑦 , 𝐴 ) ↔ ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) ) |
19 |
14 18
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ∗ ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) ) |
20 |
11 19
|
syl5com |
⊢ ( 𝑊 ∈ PreHil → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) ) |
21 |
20
|
3impib |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |