Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ipcl.f |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) |
6 |
1 2 3 5
|
phllmhm |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
7 |
|
rlmbas |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
8 |
4 7
|
eqtri |
⊢ 𝐾 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
9 |
3 8
|
lmhmf |
⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
10 |
6 9
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
11 |
5
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ↔ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
12 |
10 11
|
sylibr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝐵 ) = ( 𝐴 , 𝐵 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 , 𝐵 ) ∈ 𝐾 ↔ ( 𝐴 , 𝐵 ) ∈ 𝐾 ) ) |
15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
16 |
12 15
|
stoic3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
17 |
16
|
3com23 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |