| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipcl.f | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) )  =  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) ) | 
						
							| 6 | 1 2 3 5 | phllmhm | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉 )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 7 |  | rlmbas | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 8 | 4 7 | eqtri | ⊢ 𝐾  =  ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 9 | 3 8 | lmhmf | ⊢ ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) ) : 𝑉 ⟶ 𝐾 ) | 
						
							| 10 | 6 9 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉 )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) ) : 𝑉 ⟶ 𝐾 ) | 
						
							| 11 | 5 | fmpt | ⊢ ( ∀ 𝑥  ∈  𝑉 ( 𝑥  ,  𝐵 )  ∈  𝐾  ↔  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐵 ) ) : 𝑉 ⟶ 𝐾 ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉 )  →  ∀ 𝑥  ∈  𝑉 ( 𝑥  ,  𝐵 )  ∈  𝐾 ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ,  𝐵 )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ,  𝐵 )  ∈  𝐾  ↔  ( 𝐴  ,  𝐵 )  ∈  𝐾 ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑉 ( 𝑥  ,  𝐵 )  ∈  𝐾  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  𝐾 ) | 
						
							| 16 | 12 15 | stoic3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  𝐾 ) | 
						
							| 17 | 16 | 3com23 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  𝐾 ) |