Metamath Proof Explorer


Theorem ipcn

Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ipcn.f , = ( ·if𝑊 )
ipcn.j 𝐽 = ( TopOpen ‘ 𝑊 )
ipcn.k 𝐾 = ( TopOpen ‘ ℂfld )
Assertion ipcn ( 𝑊 ∈ ℂPreHil → , ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 ipcn.f , = ( ·if𝑊 )
2 ipcn.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 ipcn.k 𝐾 = ( TopOpen ‘ ℂfld )
4 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
8 5 1 6 7 phlipf ( 𝑊 ∈ PreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
9 4 8 syl ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
10 cphclm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod )
11 6 7 clmsscn ( 𝑊 ∈ ℂMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ )
12 10 11 syl ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ )
13 9 12 fssd ( 𝑊 ∈ ℂPreHil → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ )
14 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
15 eqid ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 )
16 eqid ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 )
17 eqid ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) )
18 eqid ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) + 1 ) ) ) )
19 simpll ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil )
20 simplrl ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
21 simplrr ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
22 simpr ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ )
23 5 14 15 16 17 18 19 20 21 22 ipcnlem1 ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) )
24 23 ralrimiva ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) )
25 simplrl ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) )
26 simprl ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) )
27 25 26 ovresd ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) )
28 27 breq1d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ) )
29 simplrr ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
30 simprr ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑤 ∈ ( Base ‘ 𝑊 ) )
31 29 30 ovresd ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) = ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) )
32 31 breq1d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ↔ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) )
33 28 32 anbi12d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) ↔ ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) )
34 13 ad2antrr ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ )
35 34 25 29 fovrnd ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) ∈ ℂ )
36 34 26 30 fovrnd ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) ∈ ℂ )
37 eqid ( abs ∘ − ) = ( abs ∘ − )
38 37 cnmetdval ( ( ( 𝑥 , 𝑦 ) ∈ ℂ ∧ ( 𝑧 , 𝑤 ) ∈ ℂ ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) )
39 35 36 38 syl2anc ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) )
40 5 14 1 ipfval ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
41 25 29 40 syl2anc ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 , 𝑦 ) = ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) )
42 5 14 1 ipfval ( ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) )
43 42 adantl ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 , 𝑤 ) = ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) )
44 41 43 oveq12d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) = ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) )
45 44 fveq2d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( abs ‘ ( ( 𝑥 , 𝑦 ) − ( 𝑧 , 𝑤 ) ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) )
46 39 45 eqtrd ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) = ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) )
47 46 breq1d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ↔ ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) )
48 33 47 imbi12d ( ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑊 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) )
49 48 2ralbidva ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) )
50 49 rexbidv ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∃ 𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) )
51 50 ralbidv ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝑊 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( abs ‘ ( ( 𝑥 ( ·𝑖𝑊 ) 𝑦 ) − ( 𝑧 ( ·𝑖𝑊 ) 𝑤 ) ) ) < 𝑟 ) ) )
52 24 51 mpbird ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) )
53 52 ralrimivva ( 𝑊 ∈ ℂPreHil → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) )
54 cphngp ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp )
55 ngpms ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp )
56 54 55 syl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ MetSp )
57 msxms ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp )
58 56 57 syl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ∞MetSp )
59 eqid ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) )
60 5 59 xmsxmet ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) )
61 58 60 syl ( 𝑊 ∈ ℂPreHil → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) )
62 cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )
63 62 a1i ( 𝑊 ∈ ℂPreHil → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) )
64 eqid ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) )
65 3 cnfldtopn 𝐾 = ( MetOpen ‘ ( abs ∘ − ) )
66 64 64 65 txmetcn ( ( ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) )
67 61 61 63 66 syl3anc ( 𝑊 ∈ ℂPreHil → ( , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) ↔ ( , : ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 , 𝑦 ) ( abs ∘ − ) ( 𝑧 , 𝑤 ) ) < 𝑟 ) ) ) )
68 13 53 67 mpbir2and ( 𝑊 ∈ ℂPreHil → , ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) )
69 2 5 59 mstopn ( 𝑊 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) )
70 56 69 syl ( 𝑊 ∈ ℂPreHil → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) )
71 70 70 oveq12d ( 𝑊 ∈ ℂPreHil → ( 𝐽 ×t 𝐽 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) )
72 71 oveq1d ( 𝑊 ∈ ℂPreHil → ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn 𝐾 ) )
73 68 72 eleqtrrd ( 𝑊 ∈ ℂPreHil → , ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) )