Metamath Proof Explorer
		
		
		
		Description:  Standard inner product on complex numbers.  (Contributed by NM, 2-Oct-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recl.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | readdi.2 | ⊢ 𝐵  ∈  ℂ | 
				
					|  | Assertion | ipcni | ⊢  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐵 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recl.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | readdi.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | ipcnval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ℜ ‘ ( 𝐴  ·  ( ∗ ‘ 𝐵 ) ) )  =  ( ( ( ℜ ‘ 𝐴 )  ·  ( ℜ ‘ 𝐵 ) )  +  ( ( ℑ ‘ 𝐴 )  ·  ( ℑ ‘ 𝐵 ) ) ) |