Step |
Hyp |
Ref |
Expression |
1 |
|
ipcn.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
ipcn.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
ipcn.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
4 |
|
ipcn.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
5 |
|
ipcn.t |
⊢ 𝑇 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) |
6 |
|
ipcn.u |
⊢ 𝑈 = ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
7 |
|
ipcn.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
8 |
|
ipcn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
9 |
|
ipcn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
10 |
|
ipcn.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
11 |
|
ipcn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
ipcn.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
|
ipcn.1 |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) < 𝑈 ) |
14 |
|
ipcn.2 |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) < 𝑇 ) |
15 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
16 |
7 8 9 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
17 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
18 |
7 11 12 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
19 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 , 𝑌 ) ∈ ℂ ) |
20 |
7 8 12 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝑌 ) ∈ ℂ ) |
21 |
10
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
22 |
16 20
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ∈ ℂ ) |
23 |
22
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ∈ ℝ ) |
24 |
|
cphnlm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) |
25 |
7 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ NrmMod ) |
26 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ NrmGrp ) |
28 |
1 4
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
29 |
27 8 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
30 |
1 4
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
31 |
27 8 30
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
32 |
29 31
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
33 |
32
|
rpred |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
34 |
|
ngpms |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) |
35 |
27 34
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ MetSp ) |
36 |
1 3
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) ∈ ℝ ) |
37 |
35 9 12 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) ∈ ℝ ) |
38 |
33 37
|
remulcld |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ∈ ℝ ) |
39 |
21
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ ) |
40 |
29 37
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ∈ ℝ ) |
41 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
42 |
2 1 41
|
cphsubdi |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) |
43 |
7 8 9 12 42
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) = ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ) |
45 |
|
ngpgrp |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) |
46 |
27 45
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
47 |
1 41
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
48 |
46 9 12 47
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
49 |
1 2 4
|
ipcau |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
50 |
7 8 48 49
|
syl3anc |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
51 |
4 1 41 3
|
ngpds |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) |
52 |
27 9 12 51
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) |
53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ) |
54 |
50 53
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 , ( 𝐵 ( -g ‘ 𝑊 ) 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
55 |
44 54
|
eqbrtrrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
56 |
|
msxms |
⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) |
57 |
35 56
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ∞MetSp ) |
58 |
1 3
|
xmsge0 |
⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 0 ≤ ( 𝐵 𝐷 𝑌 ) ) |
59 |
57 9 12 58
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 𝐷 𝑌 ) ) |
60 |
29
|
lep1d |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) ≤ ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) |
61 |
29 33 37 59 60
|
lemul1ad |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) · ( 𝐵 𝐷 𝑌 ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
62 |
23 40 38 55 61
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) ) |
63 |
14 5
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ) |
64 |
37 39 32
|
ltmuldiv2d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐵 𝐷 𝑌 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ) ) |
65 |
63 64
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) + 1 ) · ( 𝐵 𝐷 𝑌 ) ) < ( 𝑅 / 2 ) ) |
66 |
23 38 39 62 65
|
lelttrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝑌 ) ) ) < ( 𝑅 / 2 ) ) |
67 |
20 18
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ∈ ℂ ) |
68 |
67
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) |
69 |
1 3
|
mscl |
⊢ ( ( 𝑊 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 𝐷 𝑋 ) ∈ ℝ ) |
70 |
35 8 11 69
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) ∈ ℝ ) |
71 |
1 4
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
72 |
27 9 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) ∈ ℝ ) |
73 |
10
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑅 / 2 ) ∈ ℝ+ ) |
74 |
73 32
|
rpdivcld |
⊢ ( 𝜑 → ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐴 ) + 1 ) ) ∈ ℝ+ ) |
75 |
5 74
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
76 |
75
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
77 |
72 76
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ∈ ℝ ) |
78 |
70 77
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ∈ ℝ ) |
79 |
1 4
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
80 |
27 12 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ ℝ ) |
81 |
70 80
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ∈ ℝ ) |
82 |
2 1 41
|
cphsubdir |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) = ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) |
83 |
7 8 11 12 82
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) = ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) |
84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) = ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ) |
85 |
1 41
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
86 |
46 8 11 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ) |
87 |
1 2 4
|
ipcau |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
88 |
7 86 12 87
|
syl3anc |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
89 |
4 1 41 3
|
ngpds |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 𝐷 𝑋 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
90 |
27 8 11 89
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) ) · ( 𝑁 ‘ 𝑌 ) ) ) |
92 |
88 91
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 ( -g ‘ 𝑊 ) 𝑋 ) , 𝑌 ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
93 |
84 92
|
eqbrtrrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
94 |
1 3
|
xmsge0 |
⊢ ( ( 𝑊 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝐴 𝐷 𝑋 ) ) |
95 |
57 8 11 94
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 𝑋 ) ) |
96 |
80 72
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ∈ ℝ ) |
97 |
1 4 41
|
nm2dif |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
98 |
27 12 9 97
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
99 |
4 1 41 3
|
ngpdsr |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
100 |
27 9 12 99
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) = ( 𝑁 ‘ ( 𝑌 ( -g ‘ 𝑊 ) 𝐵 ) ) ) |
101 |
98 100
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ ( 𝐵 𝐷 𝑌 ) ) |
102 |
37 76 14
|
ltled |
⊢ ( 𝜑 → ( 𝐵 𝐷 𝑌 ) ≤ 𝑇 ) |
103 |
96 37 76 101 102
|
letrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ 𝑇 ) |
104 |
80 72 76
|
lesubadd2d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝑌 ) − ( 𝑁 ‘ 𝐵 ) ) ≤ 𝑇 ↔ ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
105 |
103 104
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ≤ ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
106 |
80 77 70 95 105
|
lemul2ad |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
107 |
68 81 78 93 106
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) ≤ ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
108 |
13 6
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) |
109 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
110 |
1 4
|
nmge0 |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐵 ) ) |
111 |
27 9 110
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐵 ) ) |
112 |
72 75
|
ltaddrpd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐵 ) < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
113 |
109 72 77 111 112
|
lelttrd |
⊢ ( 𝜑 → 0 < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) |
114 |
|
ltmuldiv |
⊢ ( ( ( 𝐴 𝐷 𝑋 ) ∈ ℝ ∧ ( 𝑅 / 2 ) ∈ ℝ ∧ ( ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ∈ ℝ ∧ 0 < ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) → ( ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) ) |
115 |
70 39 77 113 114
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ↔ ( 𝐴 𝐷 𝑋 ) < ( ( 𝑅 / 2 ) / ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) ) ) |
116 |
108 115
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 𝐷 𝑋 ) · ( ( 𝑁 ‘ 𝐵 ) + 𝑇 ) ) < ( 𝑅 / 2 ) ) |
117 |
68 78 39 107 116
|
lelttrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝑌 ) − ( 𝑋 , 𝑌 ) ) ) < ( 𝑅 / 2 ) ) |
118 |
16 18 20 21 66 117
|
abs3lemd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 , 𝐵 ) − ( 𝑋 , 𝑌 ) ) ) < 𝑅 ) |