| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjcl |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 2 |
|
remul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 4 |
|
recj |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 7 |
|
imcj |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) = - ( ℑ ‘ 𝐵 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) = - ( ℑ ‘ 𝐵 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) = ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) ) |
| 10 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 12 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 14 |
|
mulneg2 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 15 |
11 13 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · - ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 16 |
9 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 17 |
6 16
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ ( ∗ ‘ 𝐵 ) ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ ( ∗ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 18 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 20 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 22 |
|
mulcl |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 23 |
19 21 22
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 |
|
mulcl |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 25 |
11 13 24
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 26 |
23 25
|
subnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 27 |
3 17 26
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · ( ∗ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |