| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipdir.g | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 5 |  | ipdir.p | ⊢  ⨣   =  ( +g ‘ 𝐹 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 7 |  | simpr2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 8 |  | simpr3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 9 |  | simpr1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 10 | 1 2 3 4 5 | ipdir | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ∈  𝑉 ) )  →  ( ( 𝐵  +  𝐶 )  ,  𝐴 )  =  ( ( 𝐵  ,  𝐴 )  ⨣  ( 𝐶  ,  𝐴 ) ) ) | 
						
							| 11 | 6 7 8 9 10 | syl13anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐵  +  𝐶 )  ,  𝐴 )  =  ( ( 𝐵  ,  𝐴 )  ⨣  ( 𝐶  ,  𝐴 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  +  𝐶 )  ,  𝐴 ) )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  ,  𝐴 )  ⨣  ( 𝐶  ,  𝐴 ) ) ) ) | 
						
							| 13 | 1 | phlsrng | ⊢ ( 𝑊  ∈  PreHil  →  𝐹  ∈  *-Ring ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐹  ∈  *-Ring ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 16 | 1 2 3 15 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐵  ,  𝐴 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 17 | 6 7 9 16 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐵  ,  𝐴 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 18 | 1 2 3 15 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐶  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐶  ,  𝐴 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 19 | 6 8 9 18 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐶  ,  𝐴 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 20 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 21 | 20 15 5 | srngadd | ⊢ ( ( 𝐹  ∈  *-Ring  ∧  ( 𝐵  ,  𝐴 )  ∈  ( Base ‘ 𝐹 )  ∧  ( 𝐶  ,  𝐴 )  ∈  ( Base ‘ 𝐹 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  ,  𝐴 )  ⨣  ( 𝐶  ,  𝐴 ) ) )  =  ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  ⨣  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) ) ) ) | 
						
							| 22 | 14 17 19 21 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  ,  𝐴 )  ⨣  ( 𝐶  ,  𝐴 ) ) )  =  ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  ⨣  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) ) ) ) | 
						
							| 23 | 12 22 | eqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  +  𝐶 )  ,  𝐴 ) )  =  ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  ⨣  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) ) ) ) | 
						
							| 24 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝑊  ∈  LMod ) | 
						
							| 26 | 3 4 | lmodvacl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝐵  +  𝐶 )  ∈  𝑉 ) | 
						
							| 27 | 25 7 8 26 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐵  +  𝐶 )  ∈  𝑉 ) | 
						
							| 28 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐵  +  𝐶 )  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  +  𝐶 )  ,  𝐴 ) )  =  ( 𝐴  ,  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 29 | 6 27 9 28 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵  +  𝐶 )  ,  𝐴 ) )  =  ( 𝐴  ,  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 30 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 31 | 6 7 9 30 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  =  ( 𝐴  ,  𝐵 ) ) | 
						
							| 32 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐶  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) )  =  ( 𝐴  ,  𝐶 ) ) | 
						
							| 33 | 6 8 9 32 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) )  =  ( 𝐴  ,  𝐶 ) ) | 
						
							| 34 | 31 33 | oveq12d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵  ,  𝐴 ) )  ⨣  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶  ,  𝐴 ) ) )  =  ( ( 𝐴  ,  𝐵 )  ⨣  ( 𝐴  ,  𝐶 ) ) ) | 
						
							| 35 | 23 29 34 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐴  ,  ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴  ,  𝐵 )  ⨣  ( 𝐴  ,  𝐶 ) ) ) |