Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ipdir.g |
⊢ + = ( +g ‘ 𝑊 ) |
5 |
|
ipdir.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) |
7 |
1 2 3 6
|
phllmhm |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
8 |
7
|
3ad2antr3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
9 |
|
lmghm |
⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ) |
11 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
12 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
13 |
|
rlmplusg |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ ( ringLMod ‘ 𝐹 ) ) |
14 |
5 13
|
eqtri |
⊢ ⨣ = ( +g ‘ ( ringLMod ‘ 𝐹 ) ) |
15 |
3 4 14
|
ghmlin |
⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 GrpHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
16 |
10 11 12 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
17 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
18 |
3 4
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
19 |
17 18
|
syl3an1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
20 |
19
|
3adant3r3 |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 + 𝐵 ) → ( 𝑥 , 𝐶 ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) |
22 |
|
ovex |
⊢ ( 𝑥 , 𝐶 ) ∈ V |
23 |
21 6 22
|
fvmpt3i |
⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) |
24 |
20 23
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) , 𝐶 ) ) |
25 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝐶 ) = ( 𝐴 , 𝐶 ) ) |
26 |
25 6 22
|
fvmpt3i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) = ( 𝐴 , 𝐶 ) ) |
27 |
11 26
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) = ( 𝐴 , 𝐶 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) |
29 |
28 6 22
|
fvmpt3i |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
30 |
12 29
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
31 |
27 30
|
oveq12d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐴 ) ⨣ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
32 |
16 24 31
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , 𝐶 ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |