| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ipdir.g | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 5 |  | ipdir.p | ⊢  ⨣   =  ( +g ‘ 𝐹 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  =  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) | 
						
							| 7 | 1 2 3 6 | phllmhm | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐶  ∈  𝑉 )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 8 | 7 | 3ad2antr3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 9 |  | lmghm | ⊢ ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  GrpHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  GrpHom  ( ringLMod ‘ 𝐹 ) ) ) | 
						
							| 11 |  | simpr1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 12 |  | simpr2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 13 |  | rlmplusg | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 14 | 5 13 | eqtri | ⊢  ⨣   =  ( +g ‘ ( ringLMod ‘ 𝐹 ) ) | 
						
							| 15 | 3 4 14 | ghmlin | ⊢ ( ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) )  ∈  ( 𝑊  GrpHom  ( ringLMod ‘ 𝐹 ) )  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐴 )  ⨣  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) ) ) | 
						
							| 16 | 10 11 12 15 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐴 )  ⨣  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) ) ) | 
						
							| 17 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 18 | 3 4 | lmodvacl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  +  𝐵 )  ∈  𝑉 ) | 
						
							| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  +  𝐵 )  ∈  𝑉 ) | 
						
							| 20 | 19 | 3adant3r3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝐴  +  𝐵 )  ∈  𝑉 ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐴  +  𝐵 )  →  ( 𝑥  ,  𝐶 )  =  ( ( 𝐴  +  𝐵 )  ,  𝐶 ) ) | 
						
							| 22 |  | ovex | ⊢ ( 𝑥  ,  𝐶 )  ∈  V | 
						
							| 23 | 21 6 22 | fvmpt3i | ⊢ ( ( 𝐴  +  𝐵 )  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐴  +  𝐵 )  ,  𝐶 ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ ( 𝐴  +  𝐵 ) )  =  ( ( 𝐴  +  𝐵 )  ,  𝐶 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ,  𝐶 )  =  ( 𝐴  ,  𝐶 ) ) | 
						
							| 26 | 25 6 22 | fvmpt3i | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐴 )  =  ( 𝐴  ,  𝐶 ) ) | 
						
							| 27 | 11 26 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐴 )  =  ( 𝐴  ,  𝐶 ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ,  𝐶 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 29 | 28 6 22 | fvmpt3i | ⊢ ( 𝐵  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 30 | 12 29 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 )  =  ( 𝐵  ,  𝐶 ) ) | 
						
							| 31 | 27 30 | oveq12d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐴 )  ⨣  ( ( 𝑥  ∈  𝑉  ↦  ( 𝑥  ,  𝐶 ) ) ‘ 𝐵 ) )  =  ( ( 𝐴  ,  𝐶 )  ⨣  ( 𝐵  ,  𝐶 ) ) ) | 
						
							| 32 | 16 24 31 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐴  +  𝐵 )  ,  𝐶 )  =  ( ( 𝐴  ,  𝐶 )  ⨣  ( 𝐵  ,  𝐶 ) ) ) |