Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ip0l.z |
⊢ 𝑍 = ( 0g ‘ 𝐹 ) |
5 |
|
ip0l.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
7 |
3 1 2 5 6 4
|
isphl |
⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
8 |
7
|
simp3bi |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) |
9 |
|
simp2 |
⊢ ( ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) |
12 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
13 |
12
|
anidms |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 , 𝑥 ) = 𝑍 ↔ ( 𝐴 , 𝐴 ) = 𝑍 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ↔ ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) ) |
17 |
16
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) |
18 |
11 17
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) |
19 |
1 2 3 4 5
|
ip0l |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |
20 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 , 𝐴 ) = ( 0 , 𝐴 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 , 𝐴 ) = 𝑍 ↔ ( 0 , 𝐴 ) = 𝑍 ) ) |
22 |
19 21
|
syl5ibrcom |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 = 0 → ( 𝐴 , 𝐴 ) = 𝑍 ) ) |
23 |
18 22
|
impbid |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 ↔ 𝐴 = 0 ) ) |