| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							phlsrng.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							phllmhm.h | 
							⊢  ,   =  ( ·𝑖 ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							phllmhm.v | 
							⊢ 𝑉  =  ( Base ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							ip0l.z | 
							⊢ 𝑍  =  ( 0g ‘ 𝐹 )  | 
						
						
							| 5 | 
							
								
							 | 
							ip0l.o | 
							⊢  0   =  ( 0g ‘ 𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 )  | 
						
						
							| 7 | 
							
								3 1 2 5 6 4
							 | 
							isphl | 
							⊢ ( 𝑊  ∈  PreHil  ↔  ( 𝑊  ∈  LVec  ∧  𝐹  ∈  *-Ring  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simp3bi | 
							⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralimi | 
							⊢ ( ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							syl | 
							⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑥  =  𝐴  ∧  𝑥  =  𝐴 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anidms | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ,  𝑥 )  =  𝑍  ↔  ( 𝐴  ,  𝐴 )  =  𝑍 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =   0   ↔  𝐴  =   0  ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ↔  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							sylan | 
							⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5
							 | 
							ip0l | 
							⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  (  0   ,  𝐴 )  =  𝑍 )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =   0   →  ( 𝐴  ,  𝐴 )  =  (  0   ,  𝐴 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq1d | 
							⊢ ( 𝐴  =   0   →  ( ( 𝐴  ,  𝐴 )  =  𝑍  ↔  (  0   ,  𝐴 )  =  𝑍 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  =   0   →  ( 𝐴  ,  𝐴 )  =  𝑍 ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							impbid | 
							⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  ↔  𝐴  =   0  ) )  |