| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ip0l.z | ⊢ 𝑍  =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ip0l.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 7 | 3 1 2 5 6 4 | isphl | ⊢ ( 𝑊  ∈  PreHil  ↔  ( 𝑊  ∈  LVec  ∧  𝐹  ∈  *-Ring  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) ) ) | 
						
							| 8 | 7 | simp3bi | ⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) ) ) | 
						
							| 9 |  | simp2 | ⊢ ( ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) ) | 
						
							| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝑉 ( ( 𝑦  ∈  𝑉  ↦  ( 𝑦  ,  𝑥 ) )  ∈  ( 𝑊  LMHom  ( ringLMod ‘ 𝐹 ) )  ∧  ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  ∀ 𝑦  ∈  𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥  ,  𝑦 ) )  =  ( 𝑦  ,  𝑥 ) )  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝑊  ∈  PreHil  →  ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  ) ) | 
						
							| 12 |  | oveq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑥  =  𝐴 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 13 | 12 | anidms | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ,  𝑥 )  =  𝑍  ↔  ( 𝐴  ,  𝐴 )  =  𝑍 ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =   0   ↔  𝐴  =   0  ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ↔  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) ) ) | 
						
							| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑉 ( ( 𝑥  ,  𝑥 )  =  𝑍  →  𝑥  =   0  )  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) ) | 
						
							| 18 | 11 17 | sylan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  →  𝐴  =   0  ) ) | 
						
							| 19 | 1 2 3 4 5 | ip0l | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  (  0   ,  𝐴 )  =  𝑍 ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝐴  =   0   →  ( 𝐴  ,  𝐴 )  =  (  0   ,  𝐴 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝐴  =   0   →  ( ( 𝐴  ,  𝐴 )  =  𝑍  ↔  (  0   ,  𝐴 )  =  𝑍 ) ) | 
						
							| 22 | 19 21 | syl5ibrcom | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  =   0   →  ( 𝐴  ,  𝐴 )  =  𝑍 ) ) | 
						
							| 23 | 18 22 | impbid | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐴 )  =  𝑍  ↔  𝐴  =   0  ) ) |