Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipffval.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
ipffval.2 | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
ipffval.3 | ⊢ · = ( ·if ‘ 𝑊 ) | ||
Assertion | ipfeq | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → · = , ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | ipffval.2 | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
3 | ipffval.3 | ⊢ · = ( ·if ‘ 𝑊 ) | |
4 | 1 2 3 | ipffval | ⊢ · = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) |
5 | fnov | ⊢ ( , Fn ( 𝑉 × 𝑉 ) ↔ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ) | |
6 | 5 | biimpi | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ) |
7 | 4 6 | eqtr4id | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → · = , ) |