Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffval.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ipffval.2 | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ipffval.3 | ⊢ · = ( ·if ‘ 𝑊 ) | ||
| Assertion | ipfeq | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → · = , ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffval.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ipffval.2 | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ipffval.3 | ⊢ · = ( ·if ‘ 𝑊 ) | |
| 4 | 1 2 3 | ipffval | ⊢ · = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) |
| 5 | fnov | ⊢ ( , Fn ( 𝑉 × 𝑉 ) ↔ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ) | |
| 6 | 5 | biimpi | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 , 𝑦 ) ) ) |
| 7 | 4 6 | eqtr4id | ⊢ ( , Fn ( 𝑉 × 𝑉 ) → · = , ) |