Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffn.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ipffn.2 | ⊢ , = ( ·if ‘ 𝑊 ) | ||
| Assertion | ipffn | ⊢ , Fn ( 𝑉 × 𝑉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ipffn.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ipffn.2 | ⊢ , = ( ·if ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | 1 3 2 | ipffval | ⊢ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | 
| 5 | ovex | ⊢ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ∈ V | |
| 6 | 4 5 | fnmpoi | ⊢ , Fn ( 𝑉 × 𝑉 ) |