| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipffval.1 | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ipffval.2 | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | ipffval.3 | ⊢  ·   =  ( ·if ‘ 𝑊 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  ( Base ‘ 𝑔 )  =  𝑉 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  ( ·𝑖 ‘ 𝑔 )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  ( ·𝑖 ‘ 𝑔 )  =   ,  ) | 
						
							| 8 | 7 | oveqd | ⊢ ( 𝑔  =  𝑊  →  ( 𝑥 ( ·𝑖 ‘ 𝑔 ) 𝑦 )  =  ( 𝑥  ,  𝑦 ) ) | 
						
							| 9 | 5 5 8 | mpoeq123dv | ⊢ ( 𝑔  =  𝑊  →  ( 𝑥  ∈  ( Base ‘ 𝑔 ) ,  𝑦  ∈  ( Base ‘ 𝑔 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑔 ) 𝑦 ) )  =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) ) ) | 
						
							| 10 |  | df-ipf | ⊢ ·if  =  ( 𝑔  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑔 ) ,  𝑦  ∈  ( Base ‘ 𝑔 )  ↦  ( 𝑥 ( ·𝑖 ‘ 𝑔 ) 𝑦 ) ) ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 12 | 2 | fvexi | ⊢  ,   ∈  V | 
						
							| 13 | 12 | rnex | ⊢ ran   ,   ∈  V | 
						
							| 14 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 15 | 13 14 | unex | ⊢ ( ran   ,   ∪  { ∅ } )  ∈  V | 
						
							| 16 |  | df-ov | ⊢ ( 𝑥  ,  𝑦 )  =  (  ,  ‘ 〈 𝑥 ,  𝑦 〉 ) | 
						
							| 17 |  | fvrn0 | ⊢ (  ,  ‘ 〈 𝑥 ,  𝑦 〉 )  ∈  ( ran   ,   ∪  { ∅ } ) | 
						
							| 18 | 16 17 | eqeltri | ⊢ ( 𝑥  ,  𝑦 )  ∈  ( ran   ,   ∪  { ∅ } ) | 
						
							| 19 | 18 | rgen2w | ⊢ ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥  ,  𝑦 )  ∈  ( ran   ,   ∪  { ∅ } ) | 
						
							| 20 | 11 11 15 19 | mpoexw | ⊢ ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) )  ∈  V | 
						
							| 21 | 9 10 20 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( ·if ‘ 𝑊 )  =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) ) ) | 
						
							| 22 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( ·if ‘ 𝑊 )  =  ∅ ) | 
						
							| 23 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( Base ‘ 𝑊 )  =  ∅ ) | 
						
							| 24 | 1 23 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝑉  =  ∅ ) | 
						
							| 25 | 24 | olcd | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑉  =  ∅  ∨  𝑉  =  ∅ ) ) | 
						
							| 26 |  | 0mpo0 | ⊢ ( ( 𝑉  =  ∅  ∨  𝑉  =  ∅ )  →  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) )  =  ∅ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) )  =  ∅ ) | 
						
							| 28 | 22 27 | eqtr4d | ⊢ ( ¬  𝑊  ∈  V  →  ( ·if ‘ 𝑊 )  =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) ) ) | 
						
							| 29 | 21 28 | pm2.61i | ⊢ ( ·if ‘ 𝑊 )  =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) ) | 
						
							| 30 | 3 29 | eqtri | ⊢  ·   =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( 𝑥  ,  𝑦 ) ) |