Metamath Proof Explorer


Theorem ipge0

Description: The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v 𝑉 = ( Base ‘ 𝑊 )
reipcl.h , = ( ·𝑖𝑊 )
Assertion ipge0 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → 0 ≤ ( 𝐴 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 reipcl.v 𝑉 = ( Base ‘ 𝑊 )
2 reipcl.h , = ( ·𝑖𝑊 )
3 cphngp ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp )
4 eqid ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 )
5 1 4 nmcl ( ( 𝑊 ∈ NrmGrp ∧ 𝐴𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ )
6 3 5 sylan ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ )
7 6 sqge0d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → 0 ≤ ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) )
8 1 2 4 nmsq ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) )
9 7 8 breqtrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → 0 ≤ ( 𝐴 , 𝐴 ) )