Step |
Hyp |
Ref |
Expression |
1 |
|
reipcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
reipcl.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
4 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
5 |
1 4
|
nmcl |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
6 |
3 5
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ∈ ℝ ) |
7 |
6
|
sqge0d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) ) |
8 |
1 2 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
9 |
7 8
|
breqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ≤ ( 𝐴 , 𝐴 ) ) |