Metamath Proof Explorer


Theorem ipndxnbasendx

Description: The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion ipndxnbasendx ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1lt8 1 < 8
3 1 2 gtneii 8 ≠ 1
4 ipndx ( ·𝑖 ‘ ndx ) = 8
5 basendx ( Base ‘ ndx ) = 1
6 4 5 neeq12i ( ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 8 ≠ 1 )
7 3 6 mpbir ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx )