Metamath Proof Explorer
Description: The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024)
|
|
Ref |
Expression |
|
Assertion |
ipndxnbasendx |
⊢ ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
1lt8 |
⊢ 1 < 8 |
| 3 |
1 2
|
gtneii |
⊢ 8 ≠ 1 |
| 4 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
| 5 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
| 6 |
4 5
|
neeq12i |
⊢ ( ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 8 ≠ 1 ) |
| 7 |
3 6
|
mpbir |
⊢ ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) |