| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipid.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ipid.6 | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 3 |  | ipid.7 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 4 | 1 2 3 | ipidsq | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝑃 𝐴 )  =  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( √ ‘ ( 𝐴 𝑃 𝐴 ) )  =  ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 6 | 1 2 | nvcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 1 2 | nvge0 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  0  ≤  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 8 | 6 7 | sqrtsqd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) )  =  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 9 | 5 8 | eqtr2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) ) |