| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipoval.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
| 2 |
|
ipostr |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) Struct 〈 1 , ; 1 1 〉 |
| 3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 4 |
|
snsspr1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝐹 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } |
| 5 |
|
ssun1 |
⊢ { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) |
| 6 |
4 5
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , 𝐹 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) |
| 7 |
2 3 6
|
strfv |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) ) |
| 8 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } |
| 9 |
1 8
|
ipoval |
⊢ ( 𝐹 ∈ 𝑉 → 𝐼 = ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐹 ∈ 𝑉 → ( Base ‘ 𝐼 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , 𝐹 〉 , 〈 ( TopSet ‘ ndx ) , ( ordTop ‘ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) 〉 } ∪ { 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 〉 , 〈 ( oc ‘ ndx ) , ( 𝑥 ∈ 𝐹 ↦ ∪ { 𝑦 ∈ 𝐹 ∣ ( 𝑦 ∩ 𝑥 ) = ∅ } ) 〉 } ) ) ) |
| 11 |
7 10
|
eqtr4d |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |