Metamath Proof Explorer


Theorem ipobas

Description: Base set of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015) (Revised by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypothesis ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
Assertion ipobas ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipostr ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) Struct ⟨ 1 , 1 1 ⟩
3 baseid Base = Slot ( Base ‘ ndx )
4 snsspr1 { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ }
5 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
6 4 5 sstri { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
7 2 3 6 strfv ( 𝐹𝑉𝐹 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
8 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
9 1 8 ipoval ( 𝐹𝑉𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
10 9 fveq2d ( 𝐹𝑉 → ( Base ‘ 𝐼 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
11 7 10 eqtr4d ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )