Step |
Hyp |
Ref |
Expression |
1 |
|
ipodrsima.f |
⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐴 ) |
2 |
|
ipodrsima.m |
⊢ ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) |
3 |
|
ipodrsima.d |
⊢ ( 𝜑 → ( toInc ‘ 𝐵 ) ∈ Dirset ) |
4 |
|
ipodrsima.s |
⊢ ( 𝜑 → 𝐵 ⊆ 𝒫 𝐴 ) |
5 |
|
ipodrsima.a |
⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ∈ 𝑉 ) |
6 |
5
|
elexd |
⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ∈ V ) |
7 |
|
isipodrs |
⊢ ( ( toInc ‘ 𝐵 ) ∈ Dirset ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) ) |
9 |
8
|
simp2d |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
10 |
|
fnimaeq0 |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ( 𝐹 “ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) ) |
11 |
1 4 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) ) |
12 |
11
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝐵 ) ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
13 |
9 12
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 “ 𝐵 ) ≠ ∅ ) |
14 |
8
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) |
15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝜑 ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) |
17 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝐵 ⊆ 𝒫 𝐴 ) |
18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐵 ) |
19 |
17 18
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝒫 𝐴 ) |
20 |
19
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ⊆ 𝐴 ) |
21 |
20
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
22 |
|
vex |
⊢ 𝑎 ∈ V |
23 |
|
vex |
⊢ 𝑐 ∈ V |
24 |
|
sseq12 |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝑎 ⊆ 𝑐 ) ) |
25 |
|
sseq1 |
⊢ ( 𝑣 = 𝑐 → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) |
27 |
24 26
|
anbi12d |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ↔ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) |
28 |
27
|
anbi2d |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) ↔ ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑢 = 𝑎 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑎 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑣 = 𝑐 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) |
31 |
|
sseq12 |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
32 |
29 30 31
|
syl2an |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
33 |
28 32
|
imbi12d |
⊢ ( ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
34 |
22 23 33 2
|
vtocl2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
35 |
15 16 21 34
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑎 ⊆ 𝑐 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
36 |
35
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 ⊆ 𝑐 → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
37 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝜑 ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝑏 ⊆ 𝑐 ) |
39 |
20
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → 𝑐 ⊆ 𝐴 ) |
40 |
|
vex |
⊢ 𝑏 ∈ V |
41 |
|
sseq12 |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑢 ⊆ 𝑣 ↔ 𝑏 ⊆ 𝑐 ) ) |
42 |
25
|
adantl |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑣 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴 ) ) |
43 |
41 42
|
anbi12d |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ↔ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) ↔ ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) ) ) |
45 |
|
fveq2 |
⊢ ( 𝑢 = 𝑏 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑏 ) ) |
46 |
|
sseq12 |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
47 |
45 30 46
|
syl2an |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
48 |
44 47
|
imbi12d |
⊢ ( ( 𝑢 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( ( ( 𝜑 ∧ ( 𝑢 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
49 |
40 23 48 2
|
vtocl2 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝑐 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
50 |
37 38 39 49
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ 𝑏 ⊆ 𝑐 ) → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
51 |
50
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 ⊆ 𝑐 → ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
52 |
36 51
|
anim12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐 ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) ) |
53 |
|
unss |
⊢ ( ( 𝑎 ⊆ 𝑐 ∧ 𝑏 ⊆ 𝑐 ) ↔ ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 ) |
54 |
|
unss |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
55 |
52 53 54
|
3imtr3g |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
56 |
55
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
57 |
56
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
58 |
57
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
59 |
58
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( 𝑎 ∪ 𝑏 ) ⊆ 𝑐 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
60 |
14 59
|
mpd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
61 |
|
uneq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 ∪ 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ) |
62 |
61
|
sseq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
63 |
62
|
rexbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
64 |
63
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
65 |
64
|
ralima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
66 |
1 4 65
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ) ) |
67 |
|
uneq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ) |
68 |
67
|
sseq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
69 |
68
|
rexbidv |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
70 |
69
|
ralima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
71 |
1 4 70
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ) ) |
72 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
73 |
72
|
rexima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
74 |
1 4 73
|
syl2anc |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
75 |
74
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝐵 ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
76 |
71 75
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
77 |
76
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( ( 𝐹 ‘ 𝑎 ) ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
78 |
66 77
|
bitrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∃ 𝑐 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) ∪ ( 𝐹 ‘ 𝑏 ) ) ⊆ ( 𝐹 ‘ 𝑐 ) ) ) |
79 |
60 78
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) |
80 |
|
isipodrs |
⊢ ( ( toInc ‘ ( 𝐹 “ 𝐵 ) ) ∈ Dirset ↔ ( ( 𝐹 “ 𝐵 ) ∈ V ∧ ( 𝐹 “ 𝐵 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ∃ 𝑧 ∈ ( 𝐹 “ 𝐵 ) ( 𝑥 ∪ 𝑦 ) ⊆ 𝑧 ) ) |
81 |
6 13 79 80
|
syl3anbrc |
⊢ ( 𝜑 → ( toInc ‘ ( 𝐹 “ 𝐵 ) ) ∈ Dirset ) |