Metamath Proof Explorer


Theorem ipoglb0

Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses ipoglb0.i 𝐼 = ( toInc ‘ 𝐹 )
ipoglb0.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
ipoglb0.f ( 𝜑 𝐹𝐹 )
Assertion ipoglb0 ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 ipoglb0.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipoglb0.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
3 ipoglb0.f ( 𝜑 𝐹𝐹 )
4 uniexr ( 𝐹𝐹𝐹 ∈ V )
5 3 4 syl ( 𝜑𝐹 ∈ V )
6 0ss ∅ ⊆ 𝐹
7 6 a1i ( 𝜑 → ∅ ⊆ 𝐹 )
8 ssv 𝑥 ⊆ V
9 int0 ∅ = V
10 8 9 sseqtrri 𝑥
11 10 a1i ( 𝑥𝐹𝑥 ∅ )
12 11 rabeqc { 𝑥𝐹𝑥 ∅ } = 𝐹
13 12 unieqi { 𝑥𝐹𝑥 ∅ } = 𝐹
14 13 eqcomi 𝐹 = { 𝑥𝐹𝑥 ∅ }
15 14 a1i ( 𝜑 𝐹 = { 𝑥𝐹𝑥 ∅ } )
16 1 5 7 2 15 3 ipoglb ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐹 )