Step |
Hyp |
Ref |
Expression |
1 |
|
ipoglb0.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipoglb0.g |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
3 |
|
ipoglb0.f |
⊢ ( 𝜑 → ∪ 𝐹 ∈ 𝐹 ) |
4 |
|
uniexr |
⊢ ( ∪ 𝐹 ∈ 𝐹 → 𝐹 ∈ V ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
6 |
|
0ss |
⊢ ∅ ⊆ 𝐹 |
7 |
6
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝐹 ) |
8 |
|
ssv |
⊢ 𝑥 ⊆ V |
9 |
|
int0 |
⊢ ∩ ∅ = V |
10 |
8 9
|
sseqtrri |
⊢ 𝑥 ⊆ ∩ ∅ |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ ∩ ∅ ) |
12 |
11
|
rabeqc |
⊢ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } = 𝐹 |
13 |
12
|
unieqi |
⊢ ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } = ∪ 𝐹 |
14 |
13
|
eqcomi |
⊢ ∪ 𝐹 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } |
15 |
14
|
a1i |
⊢ ( 𝜑 → ∪ 𝐹 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } ) |
16 |
1 5 7 2 15 3
|
ipoglb |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐹 ) |