Metamath Proof Explorer


Theorem ipoglbdm

Description: The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Hypotheses ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
ipolub.f ( 𝜑𝐹𝑉 )
ipolub.s ( 𝜑𝑆𝐹 )
ipoglb.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
ipoglbdm.t ( 𝜑𝑇 = { 𝑥𝐹𝑥 𝑆 } )
Assertion ipoglbdm ( 𝜑 → ( 𝑆 ∈ dom 𝐺𝑇𝐹 ) )

Proof

Step Hyp Ref Expression
1 ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolub.f ( 𝜑𝐹𝑉 )
3 ipolub.s ( 𝜑𝑆𝐹 )
4 ipoglb.g ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
5 ipoglbdm.t ( 𝜑𝑇 = { 𝑥𝐹𝑥 𝑆 } )
6 1 ipobas ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )
7 2 6 syl ( 𝜑𝐹 = ( Base ‘ 𝐼 ) )
8 eqidd ( 𝜑 → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) )
9 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
10 1 2 3 9 ipoglblem ( ( 𝜑𝑤𝐹 ) → ( ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ↔ ( ∀ 𝑦𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦𝑧 ( le ‘ 𝐼 ) 𝑤 ) ) ) )
11 1 ipopos 𝐼 ∈ Poset
12 11 a1i ( 𝜑𝐼 ∈ Poset )
13 7 8 4 10 12 glbeldm2d ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆𝐹 ∧ ∃ 𝑤𝐹 ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) ) )
14 3 13 mpbirand ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ∃ 𝑤𝐹 ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) )
15 5 ad2antrr ( ( ( 𝜑𝑤𝐹 ) ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑇 = { 𝑥𝐹𝑥 𝑆 } )
16 unilbeu ( 𝑤𝐹 → ( ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ↔ 𝑤 = { 𝑥𝐹𝑥 𝑆 } ) )
17 16 biimpa ( ( 𝑤𝐹 ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑤 = { 𝑥𝐹𝑥 𝑆 } )
18 17 adantll ( ( ( 𝜑𝑤𝐹 ) ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑤 = { 𝑥𝐹𝑥 𝑆 } )
19 15 18 eqtr4d ( ( ( 𝜑𝑤𝐹 ) ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑇 = 𝑤 )
20 simplr ( ( ( 𝜑𝑤𝐹 ) ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑤𝐹 )
21 19 20 eqeltrd ( ( ( 𝜑𝑤𝐹 ) ∧ ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ) → 𝑇𝐹 )
22 21 ex ( ( 𝜑𝑤𝐹 ) → ( ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) → 𝑇𝐹 ) )
23 simpr ( ( 𝜑𝑇𝐹 ) → 𝑇𝐹 )
24 unilbeu ( 𝑇𝐹 → ( ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) ↔ 𝑇 = { 𝑥𝐹𝑥 𝑆 } ) )
25 24 biimparc ( ( 𝑇 = { 𝑥𝐹𝑥 𝑆 } ∧ 𝑇𝐹 ) → ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) )
26 5 25 sylan ( ( 𝜑𝑇𝐹 ) → ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) )
27 sseq1 ( 𝑤 = 𝑇 → ( 𝑤 𝑆𝑇 𝑆 ) )
28 sseq2 ( 𝑤 = 𝑇 → ( 𝑧𝑤𝑧𝑇 ) )
29 28 imbi2d ( 𝑤 = 𝑇 → ( ( 𝑧 𝑆𝑧𝑤 ) ↔ ( 𝑧 𝑆𝑧𝑇 ) ) )
30 29 ralbidv ( 𝑤 = 𝑇 → ( ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ↔ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) )
31 27 30 anbi12d ( 𝑤 = 𝑇 → ( ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ↔ ( 𝑇 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑇 ) ) ) )
32 22 23 26 31 rspceb2dv ( 𝜑 → ( ∃ 𝑤𝐹 ( 𝑤 𝑆 ∧ ∀ 𝑧𝐹 ( 𝑧 𝑆𝑧𝑤 ) ) ↔ 𝑇𝐹 ) )
33 14 32 bitrd ( 𝜑 → ( 𝑆 ∈ dom 𝐺𝑇𝐹 ) )