Step |
Hyp |
Ref |
Expression |
1 |
|
ipoval.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipole.l |
⊢ ≤ = ( le ‘ 𝐼 ) |
3 |
|
preq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑥 , 𝑦 } = { 𝑋 , 𝑌 } ) |
4 |
3
|
sseq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( { 𝑥 , 𝑦 } ⊆ 𝐹 ↔ { 𝑋 , 𝑌 } ⊆ 𝐹 ) ) |
5 |
|
sseq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
7 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } |
8 |
6 7
|
brabga |
⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
10 |
1
|
ipolerval |
⊢ ( 𝐹 ∈ 𝑉 → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } = ( le ‘ 𝐼 ) ) |
11 |
2 10
|
eqtr4id |
⊢ ( 𝐹 ∈ 𝑉 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } ) |
12 |
11
|
breqd |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝑋 ≤ 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦 ) } 𝑌 ) ) |
14 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → { 𝑋 , 𝑌 } ⊆ 𝐹 ) |
16 |
15
|
biantrurd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑌 ↔ ( { 𝑋 , 𝑌 } ⊆ 𝐹 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
17 |
9 13 16
|
3bitr4d |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑌 ↔ 𝑋 ⊆ 𝑌 ) ) |