Metamath Proof Explorer


Theorem ipolt

Description: Strict order condition of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses ipolt.i 𝐼 = ( toInc ‘ 𝐹 )
ipolt.l < = ( lt ‘ 𝐼 )
Assertion ipolt ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 < 𝑌𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 ipolt.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolt.l < = ( lt ‘ 𝐼 )
3 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
4 1 3 ipole ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 ( le ‘ 𝐼 ) 𝑌𝑋𝑌 ) )
5 4 anbi1d ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( ( 𝑋 ( le ‘ 𝐼 ) 𝑌𝑋𝑌 ) ↔ ( 𝑋𝑌𝑋𝑌 ) ) )
6 1 fvexi 𝐼 ∈ V
7 3 2 pltval ( ( 𝐼 ∈ V ∧ 𝑋𝐹𝑌𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌𝑋𝑌 ) ) )
8 6 7 mp3an1 ( ( 𝑋𝐹𝑌𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌𝑋𝑌 ) ) )
9 8 3adant1 ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐼 ) 𝑌𝑋𝑌 ) ) )
10 df-pss ( 𝑋𝑌 ↔ ( 𝑋𝑌𝑋𝑌 ) )
11 10 a1i ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋𝑌 ↔ ( 𝑋𝑌𝑋𝑌 ) ) )
12 5 9 11 3bitr4d ( ( 𝐹𝑉𝑋𝐹𝑌𝐹 ) → ( 𝑋 < 𝑌𝑋𝑌 ) )