| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipolt.i | ⊢ 𝐼  =  ( toInc ‘ 𝐹 ) | 
						
							| 2 |  | ipolt.l | ⊢  <   =  ( lt ‘ 𝐼 ) | 
						
							| 3 |  | eqid | ⊢ ( le ‘ 𝐼 )  =  ( le ‘ 𝐼 ) | 
						
							| 4 | 1 3 | ipole | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋 ( le ‘ 𝐼 ) 𝑌  ↔  𝑋  ⊆  𝑌 ) ) | 
						
							| 5 | 4 | anbi1d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( ( 𝑋 ( le ‘ 𝐼 ) 𝑌  ∧  𝑋  ≠  𝑌 )  ↔  ( 𝑋  ⊆  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝐼  ∈  V | 
						
							| 7 | 3 2 | pltval | ⊢ ( ( 𝐼  ∈  V  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋 ( le ‘ 𝐼 ) 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 8 | 6 7 | mp3an1 | ⊢ ( ( 𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋 ( le ‘ 𝐼 ) 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋 ( le ‘ 𝐼 ) 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 10 |  | df-pss | ⊢ ( 𝑋  ⊊  𝑌  ↔  ( 𝑋  ⊆  𝑌  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋  ⊊  𝑌  ↔  ( 𝑋  ⊆  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 12 | 5 9 11 | 3bitr4d | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝑋  ∈  𝐹  ∧  𝑌  ∈  𝐹 )  →  ( 𝑋  <  𝑌  ↔  𝑋  ⊊  𝑌 ) ) |