Metamath Proof Explorer


Theorem ipolub

Description: The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with S e. dom U .) Could be significantly shortened if poslubdg is in quantified form. mrelatlub could potentially be shortened using this. See mrelatlubALT . (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
ipolub.f ( 𝜑𝐹𝑉 )
ipolub.s ( 𝜑𝑆𝐹 )
ipolub.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
ipolubdm.t ( 𝜑𝑇 = { 𝑥𝐹 𝑆𝑥 } )
ipolub.t ( 𝜑𝑇𝐹 )
Assertion ipolub ( 𝜑 → ( 𝑈𝑆 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolub.f ( 𝜑𝐹𝑉 )
3 ipolub.s ( 𝜑𝑆𝐹 )
4 ipolub.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
5 ipolubdm.t ( 𝜑𝑇 = { 𝑥𝐹 𝑆𝑥 } )
6 ipolub.t ( 𝜑𝑇𝐹 )
7 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
8 1 ipobas ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )
9 2 8 syl ( 𝜑𝐹 = ( Base ‘ 𝐼 ) )
10 1 ipopos 𝐼 ∈ Poset
11 10 a1i ( 𝜑𝐼 ∈ Poset )
12 breq1 ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑇𝑦 ( le ‘ 𝐼 ) 𝑇 ) )
13 intubeu ( 𝑇𝐹 → ( ( 𝑆𝑇 ∧ ∀ 𝑣𝐹 ( 𝑆𝑣𝑇𝑣 ) ) ↔ 𝑇 = { 𝑥𝐹 𝑆𝑥 } ) )
14 13 biimpar ( ( 𝑇𝐹𝑇 = { 𝑥𝐹 𝑆𝑥 } ) → ( 𝑆𝑇 ∧ ∀ 𝑣𝐹 ( 𝑆𝑣𝑇𝑣 ) ) )
15 6 5 14 syl2anc ( 𝜑 → ( 𝑆𝑇 ∧ ∀ 𝑣𝐹 ( 𝑆𝑣𝑇𝑣 ) ) )
16 1 2 3 7 ipolublem ( ( 𝜑𝑇𝐹 ) → ( ( 𝑆𝑇 ∧ ∀ 𝑣𝐹 ( 𝑆𝑣𝑇𝑣 ) ) ↔ ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣𝐹 ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) )
17 6 16 mpdan ( 𝜑 → ( ( 𝑆𝑇 ∧ ∀ 𝑣𝐹 ( 𝑆𝑣𝑇𝑣 ) ) ↔ ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣𝐹 ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) )
18 15 17 mpbid ( 𝜑 → ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣𝐹 ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) )
19 18 simpld ( 𝜑 → ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 )
20 19 adantr ( ( 𝜑𝑦𝑆 ) → ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 )
21 simpr ( ( 𝜑𝑦𝑆 ) → 𝑦𝑆 )
22 12 20 21 rspcdva ( ( 𝜑𝑦𝑆 ) → 𝑦 ( le ‘ 𝐼 ) 𝑇 )
23 breq2 ( 𝑣 = 𝑧 → ( 𝑤 ( le ‘ 𝐼 ) 𝑣𝑤 ( le ‘ 𝐼 ) 𝑧 ) )
24 23 ralbidv ( 𝑣 = 𝑧 → ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ) )
25 breq1 ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑧𝑦 ( le ‘ 𝐼 ) 𝑧 ) )
26 25 cbvralvw ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 )
27 24 26 bitrdi ( 𝑣 = 𝑧 → ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) )
28 breq2 ( 𝑣 = 𝑧 → ( 𝑇 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑧 ) )
29 27 28 imbi12d ( 𝑣 = 𝑧 → ( ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) ↔ ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) )
30 18 simprd ( 𝜑 → ∀ 𝑣𝐹 ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) )
31 30 adantr ( ( 𝜑𝑧𝐹 ) → ∀ 𝑣𝐹 ( ∀ 𝑤𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣𝑇 ( le ‘ 𝐼 ) 𝑣 ) )
32 simpr ( ( 𝜑𝑧𝐹 ) → 𝑧𝐹 )
33 29 31 32 rspcdva ( ( 𝜑𝑧𝐹 ) → ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧𝑇 ( le ‘ 𝐼 ) 𝑧 ) )
34 33 3impia ( ( 𝜑𝑧𝐹 ∧ ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) → 𝑇 ( le ‘ 𝐼 ) 𝑧 )
35 7 9 4 11 3 6 22 34 poslubdg ( 𝜑 → ( 𝑈𝑆 ) = 𝑇 )