Step |
Hyp |
Ref |
Expression |
1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
4 |
|
ipolub.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) |
5 |
|
ipolubdm.t |
⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
6 |
|
ipolub.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) |
7 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
8 |
1
|
ipobas |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
10 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
12 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑇 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑇 ) ) |
13 |
|
intubeu |
⊢ ( 𝑇 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝑇 ∈ 𝐹 ∧ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
15 |
6 5 14
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ) |
16 |
1 2 3 7
|
ipolublem |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
17 |
6 16
|
mpdan |
⊢ ( 𝜑 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑣 → 𝑇 ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) ) |
18 |
15 17
|
mpbid |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ∧ ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
22 |
12 20 21
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ( le ‘ 𝐼 ) 𝑇 ) |
23 |
|
breq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ) ) |
25 |
|
breq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) |
26 |
25
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) |
27 |
24 26
|
bitrdi |
⊢ ( 𝑣 = 𝑧 → ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) ) |
28 |
|
breq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝑇 ( le ‘ 𝐼 ) 𝑣 ↔ 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) |
29 |
27 28
|
imbi12d |
⊢ ( 𝑣 = 𝑧 → ( ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) ) |
30 |
18
|
simprd |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ∀ 𝑣 ∈ 𝐹 ( ∀ 𝑤 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ 𝐹 ) |
33 |
29 31 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) ) |
34 |
33
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐹 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 ) → 𝑇 ( le ‘ 𝐼 ) 𝑧 ) |
35 |
7 9 4 11 3 6 22 34
|
poslubdg |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑇 ) |