Metamath Proof Explorer


Theorem ipolub0

Description: The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses ipoglb0.i 𝐼 = ( toInc ‘ 𝐹 )
ipolub0.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
ipolub0.f ( 𝜑 𝐹𝐹 )
ipolub0.v ( 𝜑𝐹𝑉 )
Assertion ipolub0 ( 𝜑 → ( 𝑈 ‘ ∅ ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 ipoglb0.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolub0.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
3 ipolub0.f ( 𝜑 𝐹𝐹 )
4 ipolub0.v ( 𝜑𝐹𝑉 )
5 0ss ∅ ⊆ 𝐹
6 5 a1i ( 𝜑 → ∅ ⊆ 𝐹 )
7 uni0 ∅ = ∅
8 0ss ∅ ⊆ 𝑥
9 7 8 eqsstri ∅ ⊆ 𝑥
10 9 a1i ( 𝑥𝐹 ∅ ⊆ 𝑥 )
11 10 rabeqc { 𝑥𝐹 ∅ ⊆ 𝑥 } = 𝐹
12 11 eqcomi 𝐹 = { 𝑥𝐹 ∅ ⊆ 𝑥 }
13 12 inteqi 𝐹 = { 𝑥𝐹 ∅ ⊆ 𝑥 }
14 13 a1i ( 𝜑 𝐹 = { 𝑥𝐹 ∅ ⊆ 𝑥 } )
15 1 4 6 2 14 3 ipolub ( 𝜑 → ( 𝑈 ‘ ∅ ) = 𝐹 )