Description: The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
ipolub0.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | ||
ipolub0.f | ⊢ ( 𝜑 → ∩ 𝐹 ∈ 𝐹 ) | ||
ipolub0.v | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
Assertion | ipolub0 | ⊢ ( 𝜑 → ( 𝑈 ‘ ∅ ) = ∩ 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
2 | ipolub0.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | |
3 | ipolub0.f | ⊢ ( 𝜑 → ∩ 𝐹 ∈ 𝐹 ) | |
4 | ipolub0.v | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
5 | 0ss | ⊢ ∅ ⊆ 𝐹 | |
6 | 5 | a1i | ⊢ ( 𝜑 → ∅ ⊆ 𝐹 ) |
7 | uni0 | ⊢ ∪ ∅ = ∅ | |
8 | 0ss | ⊢ ∅ ⊆ 𝑥 | |
9 | 7 8 | eqsstri | ⊢ ∪ ∅ ⊆ 𝑥 |
10 | 9 | a1i | ⊢ ( 𝑥 ∈ 𝐹 → ∪ ∅ ⊆ 𝑥 ) |
11 | 10 | rabeqc | ⊢ { 𝑥 ∈ 𝐹 ∣ ∪ ∅ ⊆ 𝑥 } = 𝐹 |
12 | 11 | eqcomi | ⊢ 𝐹 = { 𝑥 ∈ 𝐹 ∣ ∪ ∅ ⊆ 𝑥 } |
13 | 12 | inteqi | ⊢ ∩ 𝐹 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ ∅ ⊆ 𝑥 } |
14 | 13 | a1i | ⊢ ( 𝜑 → ∩ 𝐹 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ ∅ ⊆ 𝑥 } ) |
15 | 1 4 6 2 14 3 | ipolub | ⊢ ( 𝜑 → ( 𝑈 ‘ ∅ ) = ∩ 𝐹 ) |