Step |
Hyp |
Ref |
Expression |
1 |
|
ipoglb0.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipolub00.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) |
3 |
|
ipolub00.f |
⊢ ( 𝜑 → ∅ ∈ 𝐹 ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ 𝐼 ) ) |
5 |
|
int0el |
⊢ ( ∅ ∈ 𝐹 → ∩ 𝐹 = ∅ ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ∩ 𝐹 = ∅ ) |
7 |
6 3
|
eqeltrd |
⊢ ( 𝜑 → ∩ 𝐹 ∈ 𝐹 ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ∩ 𝐹 ∈ 𝐹 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐹 ∈ V ) |
10 |
1 4 8 9
|
ipolub0 |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∩ 𝐹 ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ∩ 𝐹 = ∅ ) |
12 |
10 11
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∅ ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ 𝐼 ) ) |
14 |
|
fvprc |
⊢ ( ¬ 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ∅ ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( toInc ‘ 𝐹 ) = ∅ ) |
16 |
1 15
|
syl5eq |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝐼 = ∅ ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( lub ‘ 𝐼 ) = ( lub ‘ ∅ ) ) |
18 |
13 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ ∅ ) ) |
19 |
18
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ( ( lub ‘ ∅ ) ‘ ∅ ) ) |
20 |
|
rex0 |
⊢ ¬ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) |
21 |
20
|
intnan |
⊢ ¬ ( ∅ ⊆ ∅ ∧ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) |
22 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
23 |
|
eqid |
⊢ ( le ‘ ∅ ) = ( le ‘ ∅ ) |
24 |
|
eqid |
⊢ ( lub ‘ ∅ ) = ( lub ‘ ∅ ) |
25 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) |
26 |
|
0pos |
⊢ ∅ ∈ Poset |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ∅ ∈ Poset ) |
28 |
22 23 24 25 27
|
lubeldm2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( ∅ ∈ dom ( lub ‘ ∅ ) ↔ ( ∅ ⊆ ∅ ∧ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) ) ) |
29 |
21 28
|
mtbiri |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ¬ ∅ ∈ dom ( lub ‘ ∅ ) ) |
30 |
|
ndmfv |
⊢ ( ¬ ∅ ∈ dom ( lub ‘ ∅ ) → ( ( lub ‘ ∅ ) ‘ ∅ ) = ∅ ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( ( lub ‘ ∅ ) ‘ ∅ ) = ∅ ) |
32 |
19 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∅ ) |
33 |
12 32
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑈 ‘ ∅ ) = ∅ ) |