Metamath Proof Explorer


Theorem ipolubdm

Description: The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
ipolub.f ( 𝜑𝐹𝑉 )
ipolub.s ( 𝜑𝑆𝐹 )
ipolub.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
ipolubdm.t ( 𝜑𝑇 = { 𝑥𝐹 𝑆𝑥 } )
Assertion ipolubdm ( 𝜑 → ( 𝑆 ∈ dom 𝑈𝑇𝐹 ) )

Proof

Step Hyp Ref Expression
1 ipolub.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipolub.f ( 𝜑𝐹𝑉 )
3 ipolub.s ( 𝜑𝑆𝐹 )
4 ipolub.u ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
5 ipolubdm.t ( 𝜑𝑇 = { 𝑥𝐹 𝑆𝑥 } )
6 1 ipobas ( 𝐹𝑉𝐹 = ( Base ‘ 𝐼 ) )
7 2 6 syl ( 𝜑𝐹 = ( Base ‘ 𝐼 ) )
8 eqidd ( 𝜑 → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) )
9 eqid ( le ‘ 𝐼 ) = ( le ‘ 𝐼 )
10 1 2 3 9 ipolublem ( ( 𝜑𝑡𝐹 ) → ( ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ↔ ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑡 ∧ ∀ 𝑧𝐹 ( ∀ 𝑦𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧𝑡 ( le ‘ 𝐼 ) 𝑧 ) ) ) )
11 1 ipopos 𝐼 ∈ Poset
12 11 a1i ( 𝜑𝐼 ∈ Poset )
13 7 8 4 10 12 lubeldm2d ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆𝐹 ∧ ∃ 𝑡𝐹 ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) ) )
14 3 13 mpbirand ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ∃ 𝑡𝐹 ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) )
15 5 ad2antrr ( ( ( 𝜑𝑡𝐹 ) ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑇 = { 𝑥𝐹 𝑆𝑥 } )
16 intubeu ( 𝑡𝐹 → ( ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ↔ 𝑡 = { 𝑥𝐹 𝑆𝑥 } ) )
17 16 biimpa ( ( 𝑡𝐹 ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑡 = { 𝑥𝐹 𝑆𝑥 } )
18 17 adantll ( ( ( 𝜑𝑡𝐹 ) ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑡 = { 𝑥𝐹 𝑆𝑥 } )
19 15 18 eqtr4d ( ( ( 𝜑𝑡𝐹 ) ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑇 = 𝑡 )
20 simplr ( ( ( 𝜑𝑡𝐹 ) ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑡𝐹 )
21 19 20 eqeltrd ( ( ( 𝜑𝑡𝐹 ) ∧ ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ) → 𝑇𝐹 )
22 21 ex ( ( 𝜑𝑡𝐹 ) → ( ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) → 𝑇𝐹 ) )
23 simpr ( ( 𝜑𝑇𝐹 ) → 𝑇𝐹 )
24 intubeu ( 𝑇𝐹 → ( ( 𝑆𝑇 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑇𝑧 ) ) ↔ 𝑇 = { 𝑥𝐹 𝑆𝑥 } ) )
25 24 biimparc ( ( 𝑇 = { 𝑥𝐹 𝑆𝑥 } ∧ 𝑇𝐹 ) → ( 𝑆𝑇 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑇𝑧 ) ) )
26 5 25 sylan ( ( 𝜑𝑇𝐹 ) → ( 𝑆𝑇 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑇𝑧 ) ) )
27 sseq2 ( 𝑡 = 𝑇 → ( 𝑆𝑡 𝑆𝑇 ) )
28 sseq1 ( 𝑡 = 𝑇 → ( 𝑡𝑧𝑇𝑧 ) )
29 28 imbi2d ( 𝑡 = 𝑇 → ( ( 𝑆𝑧𝑡𝑧 ) ↔ ( 𝑆𝑧𝑇𝑧 ) ) )
30 29 ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ↔ ∀ 𝑧𝐹 ( 𝑆𝑧𝑇𝑧 ) ) )
31 27 30 anbi12d ( 𝑡 = 𝑇 → ( ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ↔ ( 𝑆𝑇 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑇𝑧 ) ) ) )
32 22 23 26 31 rspceb2dv ( 𝜑 → ( ∃ 𝑡𝐹 ( 𝑆𝑡 ∧ ∀ 𝑧𝐹 ( 𝑆𝑧𝑡𝑧 ) ) ↔ 𝑇𝐹 ) )
33 14 32 bitrd ( 𝜑 → ( 𝑆 ∈ dom 𝑈𝑇𝐹 ) )