Step |
Hyp |
Ref |
Expression |
1 |
|
ipolub.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
|
ipolub.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
ipolub.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) |
4 |
|
ipolub.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) |
5 |
|
ipolubdm.t |
⊢ ( 𝜑 → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
6 |
1
|
ipobas |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) ) |
9 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
10 |
1 2 3 9
|
ipolublem |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐼 ) 𝑧 → 𝑡 ( le ‘ 𝐼 ) 𝑧 ) ) ) ) |
11 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
13 |
7 8 4 10 12
|
lubeldm2d |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐹 ∧ ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) ) ) |
14 |
3 13
|
mpbirand |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) ) |
15 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
16 |
|
intubeu |
⊢ ( 𝑡 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝑡 ∈ 𝐹 ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) |
19 |
15 18
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 = 𝑡 ) |
20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑡 ∈ 𝐹 ) |
21 |
19 20
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) ∧ ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ) → 𝑇 ∈ 𝐹 ) |
22 |
21
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐹 ) → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) → 𝑇 ∈ 𝐹 ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → 𝑇 ∈ 𝐹 ) |
24 |
|
intubeu |
⊢ ( 𝑇 ∈ 𝐹 → ( ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ↔ 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ) ) |
25 |
24
|
biimparc |
⊢ ( ( 𝑇 = ∩ { 𝑥 ∈ 𝐹 ∣ ∪ 𝑆 ⊆ 𝑥 } ∧ 𝑇 ∈ 𝐹 ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
26 |
5 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
27 |
|
sseq2 |
⊢ ( 𝑡 = 𝑇 → ( ∪ 𝑆 ⊆ 𝑡 ↔ ∪ 𝑆 ⊆ 𝑇 ) ) |
28 |
|
sseq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ⊆ 𝑧 ↔ 𝑇 ⊆ 𝑧 ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑡 = 𝑇 → ( ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ↔ ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) |
31 |
27 30
|
anbi12d |
⊢ ( 𝑡 = 𝑇 → ( ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ ( ∪ 𝑆 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑇 ⊆ 𝑧 ) ) ) ) |
32 |
22 23 26 31
|
rspceb2dv |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑡 ∧ ∀ 𝑧 ∈ 𝐹 ( ∪ 𝑆 ⊆ 𝑧 → 𝑡 ⊆ 𝑧 ) ) ↔ 𝑇 ∈ 𝐹 ) ) |
33 |
14 32
|
bitrd |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ 𝑇 ∈ 𝐹 ) ) |