Step |
Hyp |
Ref |
Expression |
1 |
|
ipopos.i |
⊢ 𝐼 = ( toInc ‘ 𝐹 ) |
2 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
3 |
2
|
a1i |
⊢ ( 𝐹 ∈ V → 𝐼 ∈ V ) |
4 |
1
|
ipobas |
⊢ ( 𝐹 ∈ V → 𝐹 = ( Base ‘ 𝐼 ) ) |
5 |
|
eqidd |
⊢ ( 𝐹 ∈ V → ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) ) |
6 |
|
ssid |
⊢ 𝑎 ⊆ 𝑎 |
7 |
|
eqid |
⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) |
8 |
1 7
|
ipole |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑎 ⊆ 𝑎 ) ) |
9 |
8
|
3anidm23 |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑎 ⊆ 𝑎 ) ) |
10 |
6 9
|
mpbiri |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ) → 𝑎 ( le ‘ 𝐼 ) 𝑎 ) |
11 |
1 7
|
ipole |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ↔ 𝑎 ⊆ 𝑏 ) ) |
12 |
1 7
|
ipole |
⊢ ( ( 𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑏 ⊆ 𝑎 ) ) |
13 |
12
|
3com23 |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑎 ↔ 𝑏 ⊆ 𝑎 ) ) |
14 |
11 13
|
anbi12d |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑎 ) ↔ ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) ) ) |
15 |
|
simpl |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑎 ⊆ 𝑏 ) |
16 |
|
simpr |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑏 ⊆ 𝑎 ) |
17 |
15 16
|
eqssd |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑎 ) → 𝑎 = 𝑏 ) |
18 |
14 17
|
syl6bi |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
19 |
|
sstr |
⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) |
20 |
19
|
a1i |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) → 𝑎 ⊆ 𝑐 ) ) |
21 |
11
|
3adant3r3 |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ↔ 𝑎 ⊆ 𝑏 ) ) |
22 |
1 7
|
ipole |
⊢ ( ( 𝐹 ∈ V ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑏 ⊆ 𝑐 ) ) |
23 |
22
|
3adant3r1 |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑏 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑏 ⊆ 𝑐 ) ) |
24 |
21 23
|
anbi12d |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑐 ) ↔ ( 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑐 ) ) ) |
25 |
1 7
|
ipole |
⊢ ( ( 𝐹 ∈ V ∧ 𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑎 ⊆ 𝑐 ) ) |
26 |
25
|
3adant3r2 |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( 𝑎 ( le ‘ 𝐼 ) 𝑐 ↔ 𝑎 ⊆ 𝑐 ) ) |
27 |
20 24 26
|
3imtr4d |
⊢ ( ( 𝐹 ∈ V ∧ ( 𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹 ) ) → ( ( 𝑎 ( le ‘ 𝐼 ) 𝑏 ∧ 𝑏 ( le ‘ 𝐼 ) 𝑐 ) → 𝑎 ( le ‘ 𝐼 ) 𝑐 ) ) |
28 |
3 4 5 10 18 27
|
isposd |
⊢ ( 𝐹 ∈ V → 𝐼 ∈ Poset ) |
29 |
|
fvprc |
⊢ ( ¬ 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ∅ ) |
30 |
1 29
|
eqtrid |
⊢ ( ¬ 𝐹 ∈ V → 𝐼 = ∅ ) |
31 |
|
0pos |
⊢ ∅ ∈ Poset |
32 |
30 31
|
eqeltrdi |
⊢ ( ¬ 𝐹 ∈ V → 𝐼 ∈ Poset ) |
33 |
28 32
|
pm2.61i |
⊢ 𝐼 ∈ Poset |