| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | phllmhm.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | phllmhm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | ip0l.z | ⊢ 𝑍  =  ( 0g ‘ 𝐹 ) | 
						
							| 5 | 1 | phlsrng | ⊢ ( 𝑊  ∈  PreHil  →  𝐹  ∈  *-Ring ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝐹  ∈  *-Ring ) | 
						
							| 7 |  | eqid | ⊢ ( *rf ‘ 𝐹 )  =  ( *rf ‘ 𝐹 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 9 | 7 8 | srngf1o | ⊢ ( 𝐹  ∈  *-Ring  →  ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 ) ) | 
						
							| 10 |  | f1of1 | ⊢ ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 )  →  ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) | 
						
							| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) | 
						
							| 12 | 1 2 3 8 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 13 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝑊  ∈  LMod ) | 
						
							| 15 | 1 8 4 | lmod0cl | ⊢ ( 𝑊  ∈  LMod  →  𝑍  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  𝑍  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 17 |  | f1fveq | ⊢ ( ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 )  ∧  ( ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ 𝐹 )  ∧  𝑍  ∈  ( Base ‘ 𝐹 ) ) )  →  ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  ↔  ( 𝐴  ,  𝐵 )  =  𝑍 ) ) | 
						
							| 18 | 11 12 16 17 | syl12anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  ↔  ( 𝐴  ,  𝐵 )  =  𝑍 ) ) | 
						
							| 19 |  | eqid | ⊢ ( *𝑟 ‘ 𝐹 )  =  ( *𝑟 ‘ 𝐹 ) | 
						
							| 20 | 8 19 7 | stafval | ⊢ ( ( 𝐴  ,  𝐵 )  ∈  ( Base ‘ 𝐹 )  →  ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) ) ) | 
						
							| 21 | 12 20 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) ) ) | 
						
							| 22 | 1 2 3 19 | ipcj | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) | 
						
							| 23 | 21 22 | eqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( 𝐵  ,  𝐴 ) ) | 
						
							| 24 | 8 19 7 | stafval | ⊢ ( 𝑍  ∈  ( Base ‘ 𝐹 )  →  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) | 
						
							| 25 | 16 24 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  =  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) | 
						
							| 26 | 19 4 | srng0 | ⊢ ( 𝐹  ∈  *-Ring  →  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 )  =  𝑍 ) | 
						
							| 27 | 6 26 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 )  =  𝑍 ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  =  𝑍 ) | 
						
							| 29 | 23 28 | eqeq12d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴  ,  𝐵 ) )  =  ( ( *rf ‘ 𝐹 ) ‘ 𝑍 )  ↔  ( 𝐵  ,  𝐴 )  =  𝑍 ) ) | 
						
							| 30 | 18 29 | bitr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐵 )  =  𝑍  ↔  ( 𝐵  ,  𝐴 )  =  𝑍 ) ) |