Step |
Hyp |
Ref |
Expression |
1 |
|
phlsrng.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
phllmhm.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
phllmhm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
ip0l.z |
⊢ 𝑍 = ( 0g ‘ 𝐹 ) |
5 |
1
|
phlsrng |
⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ *-Ring ) |
7 |
|
eqid |
⊢ ( *rf ‘ 𝐹 ) = ( *rf ‘ 𝐹 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
9 |
7 8
|
srngf1o |
⊢ ( 𝐹 ∈ *-Ring → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 ) ) |
10 |
|
f1of1 |
⊢ ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1-onto→ ( Base ‘ 𝐹 ) → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) |
11 |
6 9 10
|
3syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ) |
12 |
1 2 3 8
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) ) |
13 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
15 |
1 8 4
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → 𝑍 ∈ ( Base ‘ 𝐹 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑍 ∈ ( Base ‘ 𝐹 ) ) |
17 |
|
f1fveq |
⊢ ( ( ( *rf ‘ 𝐹 ) : ( Base ‘ 𝐹 ) –1-1→ ( Base ‘ 𝐹 ) ∧ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑍 ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐴 , 𝐵 ) = 𝑍 ) ) |
18 |
11 12 16 17
|
syl12anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐴 , 𝐵 ) = 𝑍 ) ) |
19 |
|
eqid |
⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) |
20 |
8 19 7
|
stafval |
⊢ ( ( 𝐴 , 𝐵 ) ∈ ( Base ‘ 𝐹 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) ) |
21 |
12 20
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) ) |
22 |
1 2 3 19
|
ipcj |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
23 |
21 22
|
eqtrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
24 |
8 19 7
|
stafval |
⊢ ( 𝑍 ∈ ( Base ‘ 𝐹 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
25 |
16 24
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
26 |
19 4
|
srng0 |
⊢ ( 𝐹 ∈ *-Ring → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
27 |
6 26
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
28 |
25 27
|
eqtrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
29 |
23 28
|
eqeq12d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( *rf ‘ 𝐹 ) ‘ ( 𝐴 , 𝐵 ) ) = ( ( *rf ‘ 𝐹 ) ‘ 𝑍 ) ↔ ( 𝐵 , 𝐴 ) = 𝑍 ) ) |
30 |
18 29
|
bitr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 𝑍 ↔ ( 𝐵 , 𝐴 ) = 𝑍 ) ) |