Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
⊢ 1 ∈ ℕ |
2 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
3 |
|
1lt9 |
⊢ 1 < 9 |
4 |
|
9nn |
⊢ 9 ∈ ℕ |
5 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
6 |
1 2 3 4 5
|
strle2 |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } Struct 〈 1 , 9 〉 |
7 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
8 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
9 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
10 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
11 |
|
0lt1 |
⊢ 0 < 1 |
12 |
9 10 1 11
|
declt |
⊢ ; 1 0 < ; 1 1 |
13 |
9 1
|
decnncl |
⊢ ; 1 1 ∈ ℕ |
14 |
|
ocndx |
⊢ ( oc ‘ ndx ) = ; 1 1 |
15 |
7 8 12 13 14
|
strle2 |
⊢ { 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( oc ‘ ndx ) , ⊥ 〉 } Struct 〈 ; 1 0 , ; 1 1 〉 |
16 |
|
9lt10 |
⊢ 9 < ; 1 0 |
17 |
6 15 16
|
strleun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ∪ { 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( oc ‘ ndx ) , ⊥ 〉 } ) Struct 〈 1 , ; 1 1 〉 |