Metamath Proof Explorer


Theorem ipotset

Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015)

Ref Expression
Hypotheses ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
ipole.l = ( le ‘ 𝐼 )
Assertion ipotset ( 𝐹𝑉 → ( ordTop ‘ ) = ( TopSet ‘ 𝐼 ) )

Proof

Step Hyp Ref Expression
1 ipoval.i 𝐼 = ( toInc ‘ 𝐹 )
2 ipole.l = ( le ‘ 𝐼 )
3 fvex ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ∈ V
4 ipostr ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) Struct ⟨ 1 , 1 1 ⟩
5 tsetid TopSet = Slot ( TopSet ‘ ndx )
6 snsspr2 { ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ }
7 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
8 6 7 sstri { ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } )
9 4 5 8 strfv ( ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ∈ V → ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
10 3 9 ax-mp ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
11 1 ipolerval ( 𝐹𝑉 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = ( le ‘ 𝐼 ) )
12 2 11 eqtr4id ( 𝐹𝑉 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } )
13 12 fveq2d ( 𝐹𝑉 → ( ordTop ‘ ) = ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) )
14 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) }
15 1 14 ipoval ( 𝐹𝑉𝐼 = ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) )
16 15 fveq2d ( 𝐹𝑉 → ( TopSet ‘ 𝐼 ) = ( TopSet ‘ ( { ⟨ ( Base ‘ ndx ) , 𝐹 ⟩ , ⟨ ( TopSet ‘ ndx ) , ( ordTop ‘ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ) ⟩ } ∪ { ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐹𝑥𝑦 ) } ⟩ , ⟨ ( oc ‘ ndx ) , ( 𝑥𝐹 { 𝑦𝐹 ∣ ( 𝑦𝑥 ) = ∅ } ) ⟩ } ) ) )
17 10 13 16 3eqtr4a ( 𝐹𝑉 → ( ordTop ‘ ) = ( TopSet ‘ 𝐼 ) )