Metamath Proof Explorer


Theorem iprod

Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)

Ref Expression
Hypotheses zprod.1 𝑍 = ( ℤ𝑀 )
zprod.2 ( 𝜑𝑀 ∈ ℤ )
zprod.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
iprod.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
iprod.5 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion iprod ( 𝜑 → ∏ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 zprod.1 𝑍 = ( ℤ𝑀 )
2 zprod.2 ( 𝜑𝑀 ∈ ℤ )
3 zprod.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
4 iprod.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
5 iprod.5 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
6 ssidd ( 𝜑𝑍𝑍 )
7 iftrue ( 𝑘𝑍 → if ( 𝑘𝑍 , 𝐵 , 1 ) = 𝐵 )
8 7 adantl ( ( 𝜑𝑘𝑍 ) → if ( 𝑘𝑍 , 𝐵 , 1 ) = 𝐵 )
9 4 8 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = if ( 𝑘𝑍 , 𝐵 , 1 ) )
10 1 2 3 6 9 5 zprod ( 𝜑 → ∏ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )