Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zprod.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| zprod.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| zprod.3 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) | ||
| iprod.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| iprod.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | iprod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zprod.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | zprod.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | zprod.3 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) | |
| 4 | iprod.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | iprod.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | |
| 6 | ssidd | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑍 ) | |
| 7 | iftrue | ⊢ ( 𝑘 ∈ 𝑍 → if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) = 𝐵 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) = 𝐵 ) |
| 9 | 4 8 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝑍 , 𝐵 , 1 ) ) |
| 10 | 1 2 3 6 9 5 | zprod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |