Metamath Proof Explorer


Theorem iprodcl

Description: The product of a non-trivially converging infinite sequence is a complex number. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodcl.1 𝑍 = ( ℤ𝑀 )
iprodcl.2 ( 𝜑𝑀 ∈ ℤ )
iprodcl.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
iprodcl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
iprodcl.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
Assertion iprodcl ( 𝜑 → ∏ 𝑘𝑍 𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 iprodcl.1 𝑍 = ( ℤ𝑀 )
2 iprodcl.2 ( 𝜑𝑀 ∈ ℤ )
3 iprodcl.3 ( 𝜑 → ∃ 𝑛𝑍𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) )
4 iprodcl.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
5 iprodcl.5 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
6 1 2 3 4 5 iprod ( 𝜑 → ∏ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
7 fclim ⇝ : dom ⇝ ⟶ ℂ
8 4 5 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
9 1 3 8 ntrivcvg ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ )
10 ffvelrn ( ( ⇝ : dom ⇝ ⟶ ℂ ∧ seq 𝑀 ( · , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ∈ ℂ )
11 7 9 10 sylancr ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ∈ ℂ )
12 6 11 eqeltrd ( 𝜑 → ∏ 𝑘𝑍 𝐴 ∈ ℂ )